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A Decade of Neural Networks: Practical Applications and Prospects

Foreword

Welcome to the JPL Neural Network Workshop. Sponsored by NASA and DoD, this

workshop brings together sponsoring agencies, active researchers, and the user

community to formulate a vision for the next decade of neural network research and

application prospects. While the speed and computing power of microprocessors

continue to grow at an ever-increasing pace ushering in the era of information

supertraffic, the demand to intelligently and adaptively deal with the complex, fuzzy, and

often iU-defined world around us remains to a large extent unaddressed. Powerful, highly

parallel computing paradigms such as neural networks promise to have a major impact in

addressing these needs.

The theme of the workshop is on practical applications. To this end, the workshop begins

with a series of invited talks focusing on a variety of applications both in control and signal

processing. Following the presentations, we will split into working groups to formulate a

road map for future R&D. The splinter groups will identify key application areas for the

future and address issues such as technology insertion.

In order to promote the cross-fertilization of ideas and seed discussion, two social events

have been planned at the Pasadena Hilton. On Wednesday evening, there will be a

welcome reception with hors d'oeuvres and a cash bar at the Hilton patio. On Thursday

evening, a sit-down dinner will be served in the Monterey room.

Abstracts and excerpts of presentation materials from the invited talks are included in this

booklet. A final report summarizing the workshop and splinter group findings will be

published later.

Thank you for your participation in what promises to be an interesting and timely forum.
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Missileborne Artificial Vision System (MAVIS)

David K. Andes, lames C. Witham, Michael D. Miles

Naval Air Warfare Center - Weapons Division

China Lake, CA 93555

ABSTRACT

Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be
the only way to do high density neural computing. In the last five years, however, digital parallel
processing chips capable of performing neural computation functions have evolved to the point of rough
equality with analog chips in system level computational density. The Naval Air Warfare Center, China
Lake has developed a real time, hardware and software system designed to implement and evaluate
biologically inspired retinal and cortical models.

The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards.

Each COI-IO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at
20 MHz in a SIMD configuration. Each COHO board has a Companion board built to support a real time
VSB interface to an imaging seeker, a NTSC cam'era and to other COHO boards. The system is designed to
have mu/tiple SIMD machines each performing different Corticomorphic functions.

The system level software has been developed which allows a high level description of Corticomorphic
structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are
those neural structures with a form similar tO that of the retina, the lateral geniculate nucleus or the visual
cortex.

This real time hardware system is designed to be shrunk into a volume compatible with air hunched tactical

missiles. Initial versions of the software and hardware have been completed and are in the early stages of
integration with a missile seeker.

INTRODUCTION

The onboard processing requirements of air intercept missiles are some of the most demanding imaginable.
This is especially Irue for missiles with imaging focal plane array detectors. Input is measured in
megabytes per second. The volume available is a few cubic inches. Decisions are required in milliseconds.
The power available is just a few watts and heat dissipation is minimal. Then the system must live in an
environment that includes salt air, desert heat, Arctic conditions, high humidity and rapid altitude changes.
Aircraft systems have similar constraints but the power, volume and heat dissipation problems are slighdy
less severe. If we are to survive in a competitive world, however, we must continue to upgrade the internal
intelligence of our systems.

Biological systems have met and overcome even greater competitive challenges in real-time embedded

computing. Biosystems have similar constraints in power, volume, heat dissipation while requiring high
speed computation including high data rate sensors of several varieties. There should be much to learn

from the many, highly successful, integrated, real-time biocomputers that surround us every day. The
MAVIS project is an attempt to do just thaL

Biological Computation Systems

The following is a partial list of some of the salient characteristics of biological computation systems:

1. Massive parallelism is the first obvious characteristic. We cannot hope to come even close to the
biosystems in this area but at least it gives a definite direction in which to move. Many simple processors
working almost independently can clearly achieve great results.



2. Mostbiocomputafionisbasedonlyonlocally available information. Transmitting information beyond a
few tenths of a millimeter becomes very expensive.

3. There is a lack of emphasis on precision in the elementary processors (neurons). In the cases where

more precision is necessary more elementary processors are dedicated to the task.

4. Local computational centers share information with several other local centers in a bi-directional
manner. Computation is shared in a non-hierarchical or only a semi-hierarchical manner. In fact most of
the information entering the local processing centers is not raw sensor data but partially processed
information from other local centers.

5. The computational components of biosystems arefinely tuned parts of a whole system. Competition
has not allowed much that is inefficient or unnecessary. The processing devoted to sensor data is well

matched to the quality and importance of the information.

Corticomorphic Processing

The mammalian vision system has some special structural characteristics which are clearly specialized for

the processing of two dimensional image information. An abstraction of the form of this system is used in
the MAVIS project and has been given the name Corticomorphic Processing. Although this model is an
abstraction of the processing centers of the visual system (such as the retina and patches of visual cortex) it
is hoped that models of other areas of the cortex will fit into this general form. The Corticomorphic
abstraction is an Artificial Neural Network (ANN) though not of one of the standard forms (e.g.

Backpropagation, ART, Hopfield, etc.).

The early processing stages of the visual system (areas like the retina, the Lateral Geniculate Nucleus,
primary visual cortex, V2, V3, etc.) have computational forms which are similar. Each area is a "patch" of
computational elements laid out in a form which preserves, at least locally, the two dimensional
relationships in the original image. Within each of the patches there are various types of neurons arranged
in sheets or layers that run throughout the entire patch. Even though the neurons on different sheets
perform very different functions the rough topology of the original image is preserved in each sheet. A
column cut vertically into a patch through all the sheets will find neurons which only respond to a small
local area of the original image. Inputs into each sheet of a patch come in through topology preserving
maps from other sheets. Most inputs into a sheet are from sheets within the same patch but some come
from sheets within other patches. The strengths of the interactions between neural processing elements can

be approximated by the mathematical form of convolution kernels. This is an approximation that is only
locally true in real biosystems since it requires exactly the same processing to take place throughout the
entire length and width of a patch.

Formalism

The introduction of some formalism may make all this more precise if not clearer. Let

O(x,y,i,j,t)

be the output value of the neural processing element at the (x,y) position of the image space in the i-th layer

of the j-th patch at time t. Then

L(m,n) = { O(x,y,i,j,t) } for i=m and j =n

is the m-th sheet or layer in the j-th patch. Note that L(m,n) is a set of neural processing elements. Note
also that we have shifted from the more descriptive word "sheet" to the more traditional ANN term "layer".

Then let

P(i) = { L(m,k) ] k=i

be the i-th patch. Note that P(i) is a set of layers.
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Typically the number of layers in a patch runs from three to ten and only a few of the layers in a patch have
outputs to layers in other patches. The output value of the neural processing elements of a layer L(i,j) is
calculated as follows:

O(x,y,ij,t) = Fij ( Y. (aid,s,p + gij,s,p Z kij,s,p(l,m) O(x-l,y-k,s,p,t-bij,s,p) ) ) (1)

The t-_rst sum is a sum over s and p where p runs over all patches driving this layer L(ij) and s runs over all
layers in p which connect to the layer L(ij). The second sum is also a double sum over 1and m which run

through enough positive and negative integers to cover the kernel kij,s,p.

In this expression:

Fi,j is the nonlinear function associated with the neural processing elements of the layer L(ij).

kij,s,p is the kernel weight function which determines the effect of the L(s,p) layer on the L(i,j)
layer.

bi_,s,p is either zero (no time delay) or one (one time step delay) depending on whether the
imormation affecting L(ij) from L(s,p) is to be current or delayed.

aij,s,p and gij,s,p are appropriate offset and gain numbers affecting the action of layer L(s,p) on
layer L(ij).

In plain English this amounts to the following: each layer in each patch is calculated by applying a set of
kernel convolutions to one or more other layers, summing the results and then passing it through a possibly
non-linear function. Gains, offsets and time delays may be applied where necessary.

A/though the sums look complex they typically contain only one to three kernel interactions with most of
the interactions occurring within the same patch (i.e. j=p). In fact a layer may interact with itself in which
case j=p and i=s and bij,s,p must be one. This self interaction allows for temporal integration (both point
and area).

One more basic construct is useful and that is the idea of a column. Let

C(u,v,p)

be the symbol for the column centered on the point (u,v) in image space on patch p. Then if

Rx(C ) and Ry(C)

are the x and y radii of the column we have

C(u,v,p) = { O(x,y,u,v,t) e L(ij) such that Ix-ul < Rx(C) and ly-jl < Ry(C) } (2)

That is a column is the set of all points (outputs of neural processing elements) in pieces of sheets (or
layers) from a single patch which are all cut to the same size and all of which are centered at the same place
in image space. Note that for C(u,v,p) the values of u, v, Rx(C), Ry(C) need not be integers.

History of Embedded Neurocomputing at China Lake

For the past fifteen years the Office of Naval Research has been funding work at China Lake with the aim
of increasing the capability of embedded computational systems for air intercept weapons. Most of the
work described in this paper was done under this ONR funding although a significant portion of the early
work in several of the areas was started under local funding at China Lake.

In the early 1980's it became clear that traditional Artificial Intelligence techniques had only limited utility
for embedded real-time systems in air intercept missiles. This was due mostly to the inability of the
hardware of the time to match the severe constraints imposed by these systems. In the mid 1980's the

3
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biologicalIy inspired field of Artificial Neural Networks showed promise of helping to overcome this
computational bottleneck. The ideas were amenable to implementation in high speed, parallel, analog
circuitry and learning algorithms could be used to circumvent the problems associated with analog
imprecision. Early experiments and designs at China Lake led to the development of the Intel ETANN chip
[1]. This chip is capable of about three billion operations per second in a fraction of a square inch.

In 1989 the Missilebome Artificial Neural Network Demonstration (MINND) program was initiated to

exploit the availability of the new computational power. The MINND program was successfully completed
in 1992 with real time demonstrations on real air targets [2]. The architecture of the MINND computer
allowed a simple version of the Corticomorphic Processing scheme to be implemented. The fixed form of
the analog circuitry, however, put rigid constraints on the types of computations that could be performed.
Toward the end of the MINND program it became clear that digital computation was catching up to the

analog when total system level computational density was considered. In particular the Adaptive Solutions
CNAPS chip [3] had characteristics that allowed us to design the current MAVIS system. MAVIS has
system level performance similar to the ETANN based MINND system but without the associated analog
problems. Packaging techniques are available which allow the design of the MAVIS system to be reduced
enough to fit the constraints of an air intercept missile. The sections of this paper that follow describe the
hardware and software components of the MAVIS system.
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MAVIS HARDWARE OVERVIEW

The MAVIS system is built around the Adaptive Solutions CNAPS chip. Each chip has 64 fixed point,
RISC processors that currently operate at 20 MHz. These processors are designed to operate in an SIMD
configuration where several CNAPS chips may be under the control of a single sequencer chip [4]. Each of
the 64 processing nodes (PNs) on each CNAPS chip has an adder, a multiplier, a logic unit, 4K bytes of
local memory, several general purpose registers, and inter-PN bussing. The system uses the Adaptive
Solutions COHO boards [5] each of which mounts four CNAPS chips for a total of 256 PNs per board. The
MAVIS system is designed to accommodate several of these COHO boards each of which is used to
implement one patch of Corticomorphic processing. A high speed bus intercommunication scheme has
been designed to allow high bandwidth injection of sensor data as well as high bandwidth inter-patch
communication.

An overview of the initial MAVIS system can be seen in Figure 1. It shows an imaging seeker connected
to the MAVIS card cage, a Motorola MVME-147 board (68030 processor), two Adaptive Solutions Inc.
COHO boards, two NAWC designed COHO Companion boards, and a NAWC designed Custom I/O board.
The diagram also shows two video display monitors and two VCRs used for displaying and recording raw

and processed video.

Adaptive Solutions Inc. has a set of integrated tools that can be used to develop and debug code for their
COHO board by using a SUN SPARC station connected to the MVME-147 via an ethemet network. Code
is developed and compiled on the SUN workstation and then downloaded to the COHO board to run.

Hardware Specifics

_OHO Board

The COHO board is a commercially available 6U V/vIE board. The major components of the board are

highlighted in Figure 2.

The board has provisions for attaching peripheral devices or memory onto its local bus. The name of this
local bus is the CNAPS/VME local bus (CVLB). The CVLB is an implementation of the company's
ADAPTbus TM applied to this specific board and its peripherals. There is a 100 pin impedance matched
connector on the COHO board which provides access to the CVLB. It is this connector that the COHO
board uses to interface to the COHO Companion board.
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Figure 2

COHO Companion ]3Ogre[

A block diagram for the COHO Companion board is shown in Figure 3. This architecture, made up of two
ping-pong memories, was chosen because it allowed images to be read from or written to both memories
simultaneously. For instance, as an incoming image is being written into Bank 1, an image can be read out
of Bank 2, processed and then written back to Bank 2 without impeding the incoming image. When both
tasks are finished the memories are swapped, so that the image in Bank 1 may be processed while a new
incoming image may be written into Bank 2.
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If one assumes an image patch of 128 by 128 and a frame rate of 60 frames per second the amount of data

that is actually passed into the system is approximately 1 MByte per second. With the MAVIS system

setup, data is processed on each COHO board (patch) and is available for display only when sent over an
interconnection bus. Thus under these assumptions with only a single COHO/COHO Companion board

pair the final I/O requirements are only about 2 MBytes/sec. When more than a single pair of boards are
used, however, there will be interaction between boards and, with more interaction, more bus bandwidth is

required. If larger images or higher video rates are required the bus bandwidth also increases. For these
reasons, it was decided to offload the data from the VME bus and use the VSB bus (V/vIE Subsystem Bus).

The current implementation is able to move data at 12 MBytes/second over the VSB. Figure 4 shows the

buses and the type of data that is transferred on each bus.

,_ _ ,_ _ _ Program/Setup _)

Ul

Processed Data

A - MVMEI47 Board
B - COHO Board
C - COHO Companion Board
D - Custom I/O Board

S eeke_ )am

and timing
information

Figure 4

Custom I/O Board

The Custom I/O board was fabricated to comply with the digital video and timing signals for an imaging

seeker. The board is also capable of displaying the incoming digital video, plus an extra video channel that
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may be used to show the results of processed or intermediate data It is also capable of selecting an Area Of
Interest (AOI) of variable size and location, from the incoming video, and Iransmitting it on the VSB Bus.

As shown in Figure 5 the system is based around a pair of dual ported memories, one for the input, and one
for the output. The output video frame's timing is in lock step with the input video frame's timing• This
feature could be used to reinsert the processed digital video back into the data stream that it was taken from•

VSB _._
Interface

4--_ H I Digital

Dual AOI l_ Video

Ported Filter F andMemory Timing
In

__ Dual
Ported

Memory

Digital
_ Video

Out

Figure 5

System Options

Having the MAVIS system tied directly to a real missile seeker has many advantages for answering
questions related directly to that particular system. There are, however, many disadvantages associated
with such a system. A second system option is also being implemented which is much more general than
the single seeker system described above. The second system uses a pan/tilt unit with a camera mounted to
it in place of the imaging seeker. Several additional boards are required to interface to a camera with a

pan/tilt unit: a frame grabber/display board, a D/A (Digital to Analog) board, and a single board computer
(SBC). A general purpose microprocessor on the SBC receives information from the COHO board with a
target location and generates the angle rates for the pan/flit unit and sends them out via the D/A board.
The microprocessor can also take slave commands from a joystick for external target designation.

MAVIS SOFTWARE OVERVIEW

The system level software is designed to combine flexibility with ease of use in the implementation of a
variety of Corticomorphic structures. The system level software is written in C and takes a text file

containing Corticomorphic descriptors and produces microcode which is native to the CNAPS processors.

The fin'st step in implementing a Corticomorphic concept is to develop a block diagram of the system to be
modeled. Figure 6 shows a relatively simple model of the outer retina. The model itself is broken up into
several layers. These layers themselves are idealized models of distinct types of retinal neurons. The boxes
labeled with the capital letter K and a number refer to the kernel which will be used in the convolutional

interaction between the layers. A kernel is a square matrix made up of integer weights designed to have a
specific effect, such as edge enhancement or smoothing.

As shown in equation (1) the creation of each layer is dependent upon several things: the other layers in the
model, the kernels with which the layers will be convolved, and the method of combining the results. The
software allows for simple definitions of feedback paths both from a layer further along in the model path
and from a layer to itself. This self interaction is accomplished by storing a layer in memory when it is
created at time t-I, so that it may be used in the creation of a layer at time t.

7
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Figure 6

Fromtheblockdiagr_mltheusermustcreatea modei_mea_akernel_les. g model_iCis a simpIet_xt
file containing a description of the elements the user wishes to include in the model. Kernel Vffesare text
files containing the dimensions, weights, gains and offsets for a kernel. The system software reads the
model file, which references the kernel files as they are needed and uses its' specifications to generate
another file containing CNAPS microcode. This microcode is assembled using the CNAPS assembler and
then loaded into the COHO program memory space. At this point, the user needs only to assert a start
command for the software to assume command of the hardware system.

There are certain details the software must accommodate to implement equation (1). Figure 7 shows the

application of a kernel (ki,j,s,p) to the intersection of a layer L(ij) and a column C(u,v,p) as described in

equation (2). The pixels surrounding this portion of the co!umn are part of a. software .cens,truct,kn.own, asia
tile border. As indicated in the figure, me tile border aria me coJumn secaon comprise me me ltseu.
order for the kernel to be applied so that the result has the proper correspondence to the pixels along the

edges of the column, extra information is required. This extra information is borrowed from neighboring
Pigs and comprises the tile border. If no tile border was constructed, and the kernel was simply applied as
in Figure 8, the result would be the shrinking of the column size as in Figure 9.

The patches referred to in the equations are actually separate COHO boards. The software allows the user
to specify which board will act as which patch and which layers the patch will be responsible for

processing.
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GENERAL NOTES

There are several extensions to the basic Corticomorphic structure which are already planned. None of
these require a modification to the form of the hardware.

1. The simplified computational form of equation (1) can be extended to allow the multiplication of
convolutions of layers as well as the sum. Sums and products could also be mixed in the same evaluation.

This modification has already been tried and is not included in equation (1) mainly because it complicates
the formalism and the write-up. Multiplication takes no more time than addition and hence this
modification costs nothing in compute time. The same cannot be said of the next two extensions.

2. The terms in the equation (1) which appear as constants (such as kernel weights, gains and offsets) could
be made to vary with time since they are stored in memory local to each controller.

3. Time delays of longer than one frame have been implemented. The cost is in local memory and some in
compute time.

9
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It is important to note that most of the current image processing schemes (neural net or otherwise) can be
put into the form of equation (1) or a minor extension of it as given above. Hence the MAVIS system
provides a good real-time test bed for many current image processing ideas.

CONCLUSION

MAVIS is an attempt to produce a computational structure which emulates the form of the processing used
in the mammalian vision systems. The eye and the brain are a coupled system which obtains an
understanding of the environment by interacting with it. It is hoped that the investigation of this complex
interaction will shed light on the functioning of real cortex as well as allowing us to design better sensing
systems for both military and non-military applications.
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APPLICATION OF ADAPTIVE LEARNING TO DIAGNOSTICS:

THE ROLE OF NEURAL NETWORKS IN DEVELOPING

PRACTICAL SOLUTIONS TO TWO MAJOR PROBLEMS

Kenneth A. Marko

Ford Research Laboratory
Ford Motor Company

Dearborn, Michigan 48121-2054

AN EVOLUTIONARY APPROACH TO PROCESS CONTROL AND DIAGNOSTICS
BASED ON ADAPTIVE LEARNING

In previous work, we have examined the application of various Artificial Intelligence (AI)
learning paradigms to the problem of diagnosing faults in complex systems in studies to
determine whether various learning systems could be properly trained to identify faults in
systems under test. The evaluation of these learning paradigms was based upon their
performance on large, stable databases which were expected to be fully representative of the
data such trained systems would be called upon to classify. These studies therefore proceeded
from the assumption that a great deal of information about the systems to be diagnosed was
available at the start of the program and that new, incoming information would be very similar
to the data upon which the system was trained. In order to develop viable schemes for real
applications at manufacturing plants it is necessary to relax these constraints and to construct
trainable diagnostic systems when:

1. Very little information from the systems under test is available at the outset of the
program.

2. The data from the systems under test changes significantly and in unpredictable
ways during the development of the diagnostic system.

11
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3. We wish not only to diagnose faults in the manufactured systems, but also to
monitor the manufacturing process to control the quality of the products.

There are several general characteristics of the problem that we can readily identify:

• Our interest is primarily on mechan_c_ faults rather than electronic faults since the
products (in this case, automobile engines) at this stage in the manufacturing process
are undergoing tests in the absence of their electronic control systems.
• Engines operate only briefly over a restricted range, and all engines are of the same
vintage, i.e. this problem is representative of a manufacturing test process rather than a
service garage test process, and is, in fact, simpler than the service problem.
• Complete knowledge of all failure modes is not known a priori, and new classes of
abnormal operation must be identified as data is obtained. Additionally, modifications
to the manufacturing process will alter the signature of normal engines on a frequent,
but unpredictable, time scale. The system must adapt to these changes as quickly as
possible, with the constraint that training data will be very limited, typically a few
hundred samples.
• The input data consists of information from only a few sensors, sampled very
frequently, making the problem more like pattern recognition in complex waveforms
and less like a sensor fusion problem.
• Training data for faulty engines is a tiny fraction of the data available for normal
engines and the statistical distributions for very rare abnormalities may never be known
very well.
• The diagnostic system must operate continuously, and adapt quickly to changes in
the product performance since continuous improvement in the complex manufacturing

process must be anticipated.

These characteristics together make the classification problem quite difficult. In particular,
our classification system must have a very low false alarm rate, a high accuracy rate for
identification of faults, be readily adaptable to changes in the process, and still function as a
"novelty" detector to identify engines with new faults not present in training samples.
Straightforward application of common learning schemes such as backpropagation in neural
networks were not satisfactory for this development program. However, we will demonstrate
that a combination of traditional methods and modem learning paradigms, does provide a

means of developing a reliable diagnostic system under realistic conditions if we permit the
program to evolve as information is gathered. Briefly, our approach is to break the
classification task down into modular processes that can be modified to suit each individual

application. We utilize traditional classifier systems at the outset, and bring neural networks
in later in the process when suitable sample sizes are available. The development of
classification systems is also expedited in this process through the use of complexity reduction
algorithms such as Principal Component Analysis (PCA) which eliminates the storage and
analysis of unneeded or redundant data. Our methods als0 rely heavily on Monte Carlo
simulation to generate statistically representative samples of training data from rather sparse
samples of real data. The analysis is applied to engine data obtained from a sample of engines
at end-of-line tests conducted as part of a quality assurance program.

DEVELOPMENT OF ON BOARD DIAGNOSTICS FOR EMISSION MONITORING:
MISFIRE MONITORS FOR PRODUCTION VEHICLES

The automotive industry is facing a new challenge in meeting regulations mandating
that all production vehicles continuously monitor their tailpipe emissions and provide
indications to the driver when the vehicles are out of compliance. The task is especially
difficult due to the fact that no direct measures of emission gases are available (reliable,
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inexpensive sensors have not been developed), so the diagnostics must be inferential. The
development of one of the monitors, the misf'n'e diagnostic, provides some insight into how
modem adaptive learning methods can be applied to a very complex and demanding task. All
auto manufacturers will be introducing hardware and software to meet the statutory
requirements beginning this model year. It is useful to note that none of the systems being
introduced appear to rely directly on ANS (Artificial Neural Systems) technology. However, at
least in our work, ANS methods have played and continue to play an important role in
developing means to comply with the legislation. The short development time required for
these programs, coupled with the limited capabilities of the on-board microprocessors have
certainly had a role in steering the deployed systems away from ANS technology. Yet, these
facts do not fully explain why ANS methods are not used in the production systems. Our
analysis suggests that "conventional" ANS, in the form of feedforward networks trained by
the backpropagation learning schemes, have deficiencies which currently limit the role of these
systems in practical applications involving large and complex databases. We have identified
several issues which must be addressed and solved before ANS methods can be expected to be
employed in developing the solutions to these diagnostic problems. The issues and the
identification of possible solutions suggest that ANS methods, properly used, may ultimately
provide the best solution to the diagnostic requirements for vehicle systems.
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- - I. INTRODUCTION

We have previously reported on the use neural networks for detection and identification of faults in
complex microprocessor controlled powertrain systems [1,2]. The data analyzed in those studies consisted
of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The
specific task of the classification system was to classify system operation as nominal or abnormal and to
identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or
actuators in the powertraln system as it was exercised over its full operating range. The use of data from a
variety of sources, each contributing some potentially useful information to the classification task, is
commonly referred to as sensor fusion and typifies the type of problems successfully addressed usingneural networks.

In this work, we explore the application of neural networks to a different diagnostic problem, the
diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
While this problem shares a number of characteristics of the previous studies, there are several significantdifferences.

• Our interest here is primarily on mechanical faults rather than electronic faults since the engine at
this stage in the manufacturing process is undergoing "cold test", i.e. it is connected to an electric
dynamometer.

• Engines operate only briefly over a restricted range, and all engines are of the same vintage.
• Complete knowledge of all failure modes is not known a priori, and new classes of abnormal

operation must be identified as data is obtained. Additionally, modifications to the manufacturing

PRECEDING PAGE BLANK NOT FILMED
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process will alter the signature of normal engines on a frequent, but unpredictable, time scale. The
system must adapt to these changes as quickly as possible, with the constraint that training data will
be very limited.
• The input data consists of information from fewer sensors sampled more frequently, making the
problem more like pattern recognition in complex waveforms and less like a sensor fusion problem.
• Training data for faulty engines is a tiny fraction of the data available for normal engines and the
statistical distributions for very rare abnormalities may never be known very well.
° We are interested not only in detecting and diagnosing faults, but also in monitoring drifts from
nominal in the manufacturing process.

All of these circumstances conspire to make this classification problem quite difficult. In particular, this
classification system must have a very low false alarm rate, a high accuracy rate for identification of faults,
be readily adaptable to changes in the process and still function as a "novelty" detector to identify engines
with new faults not presented in training samples. The simple, brute force application of backpropagation to
analysis of raw data did not reliably produce a classifier with these properties. However, the methods we
have developed can deal successfully with these circumstances and be applied as well to a wide variety of
other classification problems.

Briefly, our approach is to break the classification task down into elemental processes that can be
modified to suit each individual application. We choose to utilize traditional classifier systems and neural
networks together to obtain optimum performance for this diagnostic problem. The methods also rely
heavily on Monte Carlo simulation to generate statistically representative samples of training data from rather
sparse samples of real data. These simulations boot-strap information from reasonable assumptions about
the underlying statistics which are updated as empirical statistical distributions emerge. Such mathematical
artifices permit us to evaluate the expected performance of our classification system early in the development
process, before we have an adequate amount of actual data and can be easily adapted to utilize the true
statistics of the data.

II. INITIAL STUDIES
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Initially we used a 4.0 liter 6 cylinder engine to investigate the feasibility of comprehensive cold test
diagnostics on a representative sample of data. Only a single engine was available, and this engine was
disassembled and reassembled with deliberately introduced faults to provide the initial database for our

investigations. The engine was motored, typically at about 150 rpm, by an electric motor with an in-line
torque transducer to measure the dynamic crankshaft torque. Simultaneously, pressure transducers
monitored the intake and exhaust manifold pressures, the crankcase air pressure and the oil pressure.
Measurements of each parameter were taken every 10 crank angle degrees, and a complete data sample
consists of 70 measurements on each trace (2 x 35 samples per revolution due to a 36-1 tooth encoding
wheel). Several cycles could be averaged together, but the observed cycle to cycle fluctuations were
extremely small and one cycle appeared to be satisfactory. Therefore, the actual data acquisition time for this
test was less than 1 second. Typical samples of data from normal and abnormal operafi_on_e shown in
Figure 1. Visible on these traces are clear features associated with the engine fault, which an expert
diagnostician could conceivably use to identify the nature of the fault. These traces were selected to manifest
such recognizable features which often lead one to suspect that a simple rule based system could be
constructed to perform the diagnostics. However, the engine to engine variability and the need to
distinguish not only any one fault from normal operation, but also from all other faults, complicates
matters. Closer examination of the traces reveals that in addition to primary discriminating features present at

particular points in the trace, additional but smaller correlated features are present elsewhere in the traces. It
is desirable to utilize all helpful discriminating features to construct a robust classifier

We used a conventional backpropagation (BP) neural network in a first assault on this problem.
However, the raw data from test engine produced an unwieldy test vector with several hundred elements.
Data were collected from a test suite of 28 different faults and normal operation (29 classes) and a data base
of about 1500 test vectors was obtained. This data was artificially augmented with uncorrelated "'noise" in
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an attempt to introduce process noise (the variability that could be expected from a larger sample of
"identical" engines) into the data set. The data was divided into two equal parts for training and testing. A
BP network with a 350-50-29 configuration (350 input nodes, 50 hidden nodes and 29 output nodes) was
trained and performed acceptably well on the classification task (>98% accuracy). However, although
networks of this size are manageable on small workstations (training was ultimately performed on an IBM
RS6000 RISC processor), there are arguably too many free parameters (almost 19,000 trainable weights).
No precise rules for selecting sample sizes have appeared in the literature, but we think it prudent to have at
least one sample per trainable weight. However, with 19,000 sample vectors and 19,000 trainable weights,
proper statistical testing of such a network is beyond the capabilities of modest workstations. We therefore
sought to reduce the dimensionality of the input vectors to decrease the input data requirements and thetraining and testing times.

One approach to dimensionality reduction is to select a set of "'features" in the data, based upon an
understanding of the physical processes involved (e.g. zero crossing times, peak-to-valley ratios of torque
etc.). We elected not to pursue this approach because we wanted to develop a scheme which

required as little a priori knowledge as possible and therefore was applicable to a wide range of problems.
Principal Component Analysis (PCA) is one well-known means of developing a new representation for a
sample vector space. Typically, the PCA provides a compact representation of a sample vector space from
which effective classifiers can be constructed. A full treatment of PCA is given in a text by Jolliffe, but a
few basic features are noted here [3]. PCA is the projection of the vectors from the input samples onto a
new set of orthogonal axes which are chosen to represent the largest variance in the sample of data
presented. The first principal component is chosen as the direction which accounts for the largest variance in
the data. The next (and subsequent) principal component(s) is (are) in the direction associated with the
largest remaining variance, subject to the constraint that it is orthogonal to the preceding component(s) For
many of our data sets, if we terminate the process after about 99% of the variance is accounted for, we
observe more than 10:1 reduction in the dimensionality of input vector space. It is of perhaps more interest
to note that the performance of neural network classifiers in these new representations improved over those
using the original data representations.

If we apply PCA to our data set and terminate the PCA process after 99% of the variability has been
accounted for, we obtain a vector space in the PCA representation with 27 components. A neural network in
a 27-16-29 configuration (about 900 trainable weights), trained with 25% of the number of passes through
the training set required for the raw data. Combining the smaller number of weight updates required with
the smaller number of passes through the data. the use of the PC representation reduced the network trainingtime by a factor of 100.

The PCA analysis could be applied to the complete vector space, in which case the sample space of 350
x 2000 is projected onto a new set of axes. However. the association of the resulting PCA components with

any physical measurement is quite difficult and the computational task involves inverting very large
matrices. To avoid these difficulties and to provide a means of visualizing and interpreting the PCA
representation, we divided the input vector space into several subspaces and performed the PCA on those

subspaces. The subspaces were the individual cylinder torque traces, the overall torque trace, the separate
overall pressure traces, and finally the deviations of the individual cylinder events from the mean of all

events for that engine. The exact details of this subspace decomposition are discussed elsewhere and precise
decomposition is problem dependent I41. The significance of this step is that its reduces the computational
task for PCA, it simplifies the interpretation of the PCA and it very often reduces the number of PC's in
each subspace to 3 or 4. Figure 2 indicates how vari_ats faalt signatures appeared in the PCA representation.
With the help of 3-D scatterplots and "'slicing" |n the hmrth dimension, or with matrix plots, the PC data
within each subspace can be easily visualized 151. For our purposes, the decomposition of the engine data
was into 11 suhspaces with 2 to 5 PC's retained for each subspace. The 11 subspaces contained a total of
35 elements which comprised the reduced PC repre_ntation of the engine data (nearly a factor of 100
reduction), it is on this vector representation thaz the classificathm prublem is attacked.

17



IIl. ANALYSIS

For a case study on real data, we were presented with data from over 1000 different pre-production
engines. This dataset was obtained from a plant survey, and lacked a bona fide classification for each
engine, although very good engines and engines with serious defects were quite evident from the graphs.
The problem was to develop a classifier which could identify GOOD from BAD and also identify any faults
present in the engines under test. As a f'trst step, we visually scanned all the raw data and identified as
many engines as possible as GOOD or BAD and assembled a training set from this manually tagged data. A
neural network was trained on this data set until its RMS error ceased to decrease. The classifications of the

network were compared with ours and some adjustments were made to our classifications and the network
was retrained on the retagged data set. After a few iterations on a training sample of 300 engines, the
process converged to agreement between the network classifications and ours. The network was tested on
the remaining engines and the results were compared with a technician's analysis of the data. In most cases,
the expert technician and the network were in agreement, although the technician was analyzing raw data and
the network was analyzing the PCA data.

In reviewing this database, we noticed that sudden changes in the signal spectra took place as a result of
changes introduced in the manufacturing process. For example, such an effect could be caused by a change
in the lubricating oil in the engine which reduces the turnover torque. This situation caused batches of data
within the database to have different means and slightly different variances. Consequently, the amount of
real data which would be available to provide examples for training sets seemed likely to be very limited.
Further analysis of the PC's revealed that the covariance matrix of the PC data contained off-diagonal terms,
indicating that the individual raw signal traces from each engine were correlated. It was noted that the
sample means of the PC's varied from production batch to batch, but that the covariance matrix was stable.
To re-train a network each time such a shift in the production occurred would require copious quantifies of
data, which would not be available until some time after each change in the production process. A viable
solution to this problem is to utilize the fact that the second-order statistics of the measurement problem are
stable and incorporate Monte Carlo methods to generate sufficient data from estimates of the sample means.
Unlike our initial study in which we utilized uncorrelated noise, we now needed to generate Monte Carlo
data with the same covariance as the real data. A detailed description of the means to carry out this

procedure is contained in the Appendix. The Monte Carlo process may be used to generate augmented data
sets of both normal and faulty engines if one makes the reasonable assumption that the faulty engines' PC's
have covariance matrices similar to that of the normals. This data augmentation process also helps to identify
"class clusters" that are easy to separate. In the past, higher success rates for proper class identification of
abnormal situations were claimed than could actually be obtained in practice because the variance in the
clusters of abnormals was not properly accounted for. In our approach, we base our estimates of the cluster
statistics on the historical data and amend the statistics as necessary to be consistent With the incoming data.
In most cases, the proper consideration of all the cluster variances diminishes the ability to separate all the
fault categories. However, the performance observed in development provides a more accurate gauge of
final performance.

In attempting to provide a diagnostic tool which is easy to manage and re-train, we noted that the PCA
data, broken down into the 11 subspaces could be very effectively classified as GOOD or BAD by a hard
shell classifier defined by elliptical shells centered on the centroids of the distribution of GOOD engines with
axes radii determined by the variance of the distributions. Normalization of the distributions to zero mean
and unit variance simplifies the classifier boundaries to spherical shells. An ideal engine would be most
similar to the best engine identified or the mean of an ensemble of such engines. If the deviation of an
engine from such a distribution is larger than an acceptable value, the engine is declared to be unsatisfactory.
In the early stages of this functional testing, no empirical data was available for selecting the tolerance
boundary. We used Monte Carlo simulations to determine the variations we could expect from a single class
of data with the proper covariance matrix. From this simulation we determined that shells with radii shown
in Figure 3 would contain virtually all of the Monte Carlo samples. To pass, an engine must fall within all
11 shells constructed for the 11 vector PC subspaces. However, since the Monte Carlo statistics are

Gaussian, a fraction the samples will fall outside some spheres. If the values associated with the hard-shell
classifiers are selected as shown in Figure 3, we have determined that the GOOD engines should score 9.0
or higher (on a scale of 11) in order to pass 99% of the samples. The histogram of the Monte Carlo data for
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the expected distribution of GOOD engines is shown in Figure 4. If the engine falls below the threshold

value, then the neural network will be used to identify the failure present. This approach provides an easily
understandable, traditional classifier for acceptance and rejection based upon the assumption of a convex
data set for the normal engines. The neural network is used for the task it can perform well, fault
classification, which may involve very odd-shaped or non-convex sets of data. We anticipate that the class
clusters are well-separated, but perhaps not by simple boundaries. The data set from the plant is consistent
with this conjecture. Typically, the faulty engines from the production data scored below a 6 or 7, so that we

may expect that the distributions of GOOD and BAD are as separable as they were in the initial laboratory
study with the 3.0 liter engine. In this situation, we can effectively use standard feedforward networks
trained by backpropagation, or utilize Restricted Coulomb Energy (RCE) networks which train much faster.

The process control aspect of this approach is evident if we monitor the engine scores as a function of
time. For each major change in the production, the engine test scores dropped until new sample means were
calculated. The neural network can provide information on the nature of the problem by indicating the
"direction" or the tendency of a fault. For BP, we use one unit in the output layer for each fault class,, and
as the data points move in the direction of a known fault, the GOOD output node decreases in value and the
FAULT node associated with the class direction in which the data is moving increases in value. Thus, the
neural network may be used to provide prognostic information about engines that have not crossed the
threshold for outright rejection. We note that the BP network in this situation operates with the full 35
dimensional input space as a fully interconnected network. Investigations are underway to determine ff
subspace groupings, as used for the hard shell acceptance classifier, applied to the RCE network provide
any benefits.

IV. CONCLUSIONS

We have demonstrated how a combination of conventional statistical processing methods and neural

networks can be combined to create a classifier system for engine diagnostics. The most significant
computational effort is required to compute the PCA and to properly develop the hard-shell classifiers using
data sets augmented with Monte Carlo methods. Once these procedures are carried out, the application of
neural networks to the data set to obtain the trainable classifier is quite straightforward. We expect that these
methods are applicable to a wide range of classification problems.
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FIGURE 1. Data traces obtained from normal engine (on the left) and from an engine
with an easily detectable fault (on the right). The traces are based upon sampling the
analog signals one every crankangle degree, so that each trace consists of 720 points.
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Document Analysis with Neural Net Circuits

Hans Peter Graf

AT& T Bell Laboratories, Holmdel, NJ 07733

Document analysis is one of the main applications of machine vision today and offers
great opportunities for neural net circuits. Despite more and more data processing with
computers, the number of paper documents is still increasing rapidly. A fast translation
of data from paper into electronic format is needed almost everywhere, and when done
manually, this is a time consuming process. Markets range from small scanners for
personal use to high-volume document analysis systems, such as address readers for the
postal service or check processing systems for banks.

A major concern with present systems is the accuracy of the automatic interpretation.
Systems tend to work well, if the image is not too complex and its quality is good, i.e.
there is no noise in the image and the print quality is good. Todays algorithms, however,
fail miserably when noise is present, when the print quality is poor or when the layout is
complex. A common approach to circumvent these problems is, to restrict the variations
of the documents handled by a system.

Improving the robustness of algorithms, to deal with a wider variety of conditions, seems
always to lead to algorithms requiring an enormous amount of computation. This is a
good opportunity for specialized circuits, such as neural net chips. Key for a successful
integration of such a circuit into an application is that all the algorithms, from start to
end, are taken into account and that the throughput of each stage is well balanced. Often
neural net circuits were designed with one particular algorithm in mind, for example the
character recognition. But in an application other processing steps, such as the layout
analysis or just the discrimination between figures and text, may require more
computation and represent the throughput bottleneck. It is clear by now that "pure neural
network" solutions are suited for some aspects of document analysis, most notably the
recognition of individual characters, but many problems are solved more effectively with
other types of algorithms. The main problem for any hardware implementation is that
algorithms applied in document analysis are still evolving and are changing rapidly. It is
therefore easily possible that by the time a circuit is built and integrated into a system,
newer algorithms with better performance and different compute requirements have been
developed.

In our laboratory, we had the best luck with circuits implementing basic functions, such
as convolutions, that can be used in many different algorithms. To illustrate the
flexibility of this approach, three applications of the NET32K circuit are described:
Locating address blocks, cleaning document images by removing noise, and locating
areas of interest in personal checks to improve image compression. Several of the ideas

: realized in this circuit that were inspired by neural nets, such as analog computation with
a low resolution, resulted in a chip that is well suited for real-world document analysis
applications and that compares favorably with alternative, "conventional" circuits.
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Abstract

Engineering neural network systems are best known for their abilities to adapt to the changing
characteristics of the surrounding environment by adjusting system parameter values during the learning
process. Rapid advances in analog current-mode design techniques have made possible the
implementation of major neural network functions in custom VLSI chips. An electrically programmable
analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of
the synapse cells, neurons, and analog processors are presented. A synapse cell based on Gilbert
multiplier structure can perform the linear multiplication for back-propagation networks. A double
differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse
cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold
region for low-power operation. The voltage gain of the sigmoid-function neurons is externally
adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building
blocks can be intelligently connected to form useful industrial applications. Efficient data communication
is a key system-level design issue for large-scale networks. We also present analog neural processors
based on Perceptron architecture and Hopfield network for communication applications. Biologically
inspired neural networks have played an important role towards the creation of powerful and intelligent
machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically
inspired vision processing chips and cellular neural network chips are key design issues.

I. Introduction

Rapid progresses in the research of intelligent information processing paradigms, architectures,
and electronic hardware implementations based on artificial and biologically-inspired neural net-
work models have helped to establish a rich knowledge base for pr_tical applications. Studies
of engineering neural network models were motivated by the investigation of human perceptron.
The Von Neumann computing approach incorporates a single central processing unit and the main
memory unit. It can execute instructions sequentially with a reasonable speed and accuracy for
conventional data-processing applications. However, these digital machines, when packaged in a
small physical size, can not perform computationally-intensive tasks with satisf_tory performance
m such areas as intelligent perceptron, including visionary and auditory signal processing, recog-
nition, understanding, and logical reasoning where human being and even living animals can do asuperb job.

Recent advances in artificial and biological neural networks research have provided excited evi-
dence for high-performance information processing with a more efficient use of computing resources.
The secret lies in the design optimization at various levels of computing and communication. Each
neural network system consists of massively paralleled and distributed signal processors with every
processor performing very simple operations. Large computational capabilities of these systems
are derived from collectively parallel processing and efficient data routing through well-structured
interconnection networks. Two different operation modes are associated with a typical neural
information processing network: the data retrieving process and the learning process.

II. General Properties

Many important issues need to be carefully addressed in constructing electronic neural network
systems:
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1. A balanced exploration on the computing algorithms and architectures which are suitable for

digital VLSI implementations and analog networks;

2. Emphasis of both artificial neural networks and biologically-inspired neural models; and

3. Solving real-world, large-scale problems.

In electronic implementation, the options are digital, analog, a combination of both, or pulsed-
stream forms. Analog approaches can be divided into continuous-time [1, 2, 3], and discrete-time

schemes [4, 5]. In continuous-time analog VLSI, some additional options arise relating to the
operation mode of transistors: weak inversion [6] and strong inversion [7]. The pulsed-stream
approach [8] is more biologically motivated than other approaches. Lyon and Mead [9] described
the VLSI implementation of an analog electronic cochlea for speech recognition. Koch et al. [10]
reported a real-time chip for computer vision and robotics. Satyanarayana et al. [11] presented
a reconfigurable analog VLSI neural chip for general-purpose applications. Hollis and Paulos [12]

proposed a current-summing neuron with binary data registers. Boser and Sackinger [13] presented
an analog neural chip for hand-written character recognition. Fang, Sheu, et al: [14] presented a
mixed-signal neural network processor chip for self-organizing networks.

There are three basic neural network architectures: the iterative networks, the multi-layer per-

ceptron networks, and the self-organizing networks. The iterative neural networks, which are also
called recurrent neural networks, are promising for temporal pattern recognition and generation.
Recurrent neural networks can solve optimization problems because of their constraint-satisfaction
capabilities. Data is retrieved from an iterative network through associative recalling. Represen-
tative iterative networks include the Hopfield network [15] ana bidirectional associative memory

[16]. In a multi-layer perceptron network, supervised learning [17] is used. The effective errors for
the output layer and hidden layers are calculated from the actual outputs and expected outputs.
Synapse weights are updated according to the delta rules or the derivatives. Layered neural net-
works are effective for spatial pattern recognition. The multi-layer perceptron networks are widely
used in industrial applications.

A self-organizing network consists of two layers of neurons: the input layer and the competitive
layer, which is also called the output layer [18]. A winner-take-all function is performed among
the neurons in the competitive layer. The self-organizing network has the desirable property, of
effectively producing spatially organized presentation of various features of the input signals [19].
Competitive learning depends on the competition among the output neural units. Self organization
is required in several image and vision processing applications such as pattern recognition, vector
quantization for image compression, and motion estimation. In addition, it may be applied in the
selection of optimal inference paths in symbolic computers. Such an application can systematically
reduce the knowledge inference operation from an NP complete problem to a much simplified

problem in a very efficient way.

III. Analog Building Blocks

Power consumption, required silicon area, and the number of packaged pins are also important
figures of merit in practical hardware implementation. The required silicon area for a given function
will be gradually decreased with the advances of microelectronic fabrication technologies. Therefore,
the number of packaged pins for information communication could become a fundamental limitation
for information exchange. Each package pin can be shared by several functional outputs through
time-multiplexing scheme or frequency-multiplexing scheme.

A. Memory in Synapse Cells

An important component in hardware implementation of learning is memory. In analog
neural network processor chips, synapse weight information can be stored in various formats.
In the early design, fixed-resistance synapses were implemented with the well regions or
an amorphous-silicon layer. Complementary-MOS transmission gates were also proposed
to achieve programmable synapse resistance. Continuous-time synthesized resistance [20] is
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made of four MOS transistors which are connected in a cross-coupled fashion. The threshold
voltage mismatch effect is minimized by using symmetric control voltage.

A basic transconductance amplifier which is made of five MOS transistors requires a simple
control signal for the programmable synapses [8]. Such a compact and programmable synapse
provides the first- and third-quadrant multiplication capability. The synapse weight can be
stored on the gate capacitance and refreshed periodically. A modified wide-range Gilbert
multiplier is suitable for general-purpose programmable synaptic operation because it provides
four-quadrant multiplication capability [21]. Long-term memory information can be stored in
the floating-gate devices fabricated by a special EEPROM technology [22] or by a conventional
double-polysilicon technology for analog circuits for over 20 years in room temperature [23].

B. Neurons

The summed synaptic current is converted to the voltage through a current-to-voltage con-
verter. The feedback resistance of the converter can be implemented with six MOS transis-
tors. The voltage gain of the neurons can be controlled continuously to perform the hardware
annealing operation [24, 25] for the quick searching of optimal solutions in nonlinear opti-
mization applications. Such a hardware implementation of mean-field annealing can be used
in recurrent neural networks and multi-layered perceptron networks to avoid local minima
problems.

C. Winner-Take-All Circuit

A high-precision VLSI winner-take-all circuit can achieve high-speed operation by biasing
transistors in the strong-inversion region. It uses the cascade configuration to significantly
increase the competition resolution and maintain a high speed operation for a large-scale
network. The total bias current increases in proportion to the number of circuit cells so that
a nearly constant response time is achieved. In addition, a unique dynamic current steering
method is used to ensure only a single winner exists in the final output. Experimental results
of the prototype chip fabricated by a 2-#m CMOS technology show that a cell can be a winner
if its input is larger than those of the other cells by 15 mV. The measured response time
is around 50 nsec at a 1-pF load capacitance. This analog winner-take-all circuit is a key
module in the competitive layer of self-organization neural networks.

D. Radial-Basls Function Circuit

The circuit schematic diagram and transistor sizes for a Gaussian function synapse cell is
shown [26]. This circuit consists of MOS differential pair and several arithmetic computational
units in the current-mode configuration. Transistors with non-minimum channel lengths are
used to avoid the channel-length modulation effect. The input voltage is applied to the gate
terminal of one transistor in the differential pair and the synapse weight value is stored on
the capacitance at the gate terminal of the other transistor. Measured results of the Gaussian
synapse cell are shown.

IV. Design Methodology

Mixed-signal VLSI implementation is suitable for novel signal processing applications such as
image restoration [45] and optical flow computing [46]. The mixed analog-digital circuit design
techniques are used to take advantages of efficient numerical computation in analog domain with
long-distance communication in digital data bus. The multiplexed scheme can also be used to
transmit signals over a long distance in an electronic system. Additional system-level integration
results can be found in [47].

Hybrid approach using combined analog dynamics and digital logic represents very powerful
and appealing design. For example, the programmable CNNs provide a new quality of artificial
neural networks through a kind of analog software, a simple way to solve CNN algorithms. In our
design, we give the network instructions and templates information just like we had done with the
general-purpose CPU. The whole system will work like a SIMD machine and each local cell will
execute the given commands to accomplish the functions we want. There are two distinct portions

F--

31



W

but they both use the analog and digital circuits. One part is consisted of global digital control
circuits and global analog memory; the other one has one duplications in each local cell which
contains small local control circuits and local analog and digital memory. A timing diagram of the

global digital circuit is shown in figure 8.
One other novel way to implement the neural network is a hybrid neurocomputer that utilized

electro-optic components for the input processing and analog electronics for implementation of
the remainder of the transfer function. This type of neurocomputer was shown to be capable of
successfully implementing simple Hopfield neural networks with weight values restricted to the set

{-1, 0, +1). B. Softer et. al also developed a first all-optical neurocomputer [27].

V. Cellular Neural Network

1. General

A cellular neural network (CNN) is a continuous-time or discrete-time artificial neural network
that features a multi-dimensional array of neuron cells and local interconnections among the
cells. The basic CNN proposed by Chua and Yang [28, 29] in 1988 is a continuous-time network
in the form of an n-by-m rectangular-grid array where n and m are the numbers of rows and
columns, respectively. However, the geometry of the array needs not to be rectangular and
can be such shapes as triangle or hexagon [30]. A multiple of arrays can be cascaded with an
appropriate interconnect structure to construct a multi-layered CNN. Structural variations of
the continuous-time, shift-invariant, rectangular-grided network include discrete-time CNN
[31], CNN with nonlinear and delay-type templates [32], etcl CNN and its variations provide
a natural and universal model of analog processor arrays on a geometrical grid. Their local
connectivity and regular structure appear most efficient for electronic implementation for
high-speed, real-time applications. Several hardware implementations of the CNN have been
reported in the literatures [33]-[39].

2. Hardware Annealing

The hardware-based annealing technique [25], has an analogy to the metallurgical annealing
in the metallurgy and simulated annealing in the Boltzmann machine, which are the optimal
stochastic procedures. It is a paralleled, electronic version of the deterministic mean-field
learning rule [42, 43] directly incorporated with the Hopfield neural network or CNN. It is
a dynamic relaxation process for finding the optimum solutions in the recurrent associative
neural networks such as Hopfield network and CNN. Even with a correct mapping of the
cost function onto a neural network, the desired combinatorial solution is not guaranteed
because a concave optimization problem always involves a large number of local minima. True
combinatorial solutions can be achieved by applying the hardware-based annealing technique
with which the global minimum of E is found in a real-time speed.

3. Applications

The CNN's can be used in many computation-intensive, adaptive signal processing applica-
tions. Due to its two-dimensional array architecture, CNN's are suitable for real-time image

processing applications in the following areas [30].

(a) Image processing: Feature extraction, motion detection & estimation, path tracking,
collision avoidance, and mage halft0ning,

(b) 3-D surface analysisl Min/max detection and gradient estimation,

(c) Solving partial differential equations,

(d) Non-visual data imaging: Thermographic images, antenna array images, and medical
maps and images.

A CNN has similar collective computational behaviors with Hopfield neural networks. Thus,

the quadratic nature of the Lyapnov function allows us to map it into optimization problems
[41, 43].
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VL Conclusion

There is a strong need to develop new neural network architectures and design techniques to
extend the size of electronic implementation to a larger scale for solving real-world problems in
science, engineering, and business. Extension of the hardware annealing to large-scale networks
for complex problems is highly desirable. Chip-level and system-level packaging technologies will
be crucial for future computing machines with one-million-unit neural networks on silicon wafers
that interact with the external environment and change the structures adaptively. Reusable soft-
ware modules and hardware modules are to be invented. For large scientific problems, neural
networks with 10 tera connection updates per second will be needed. A flexible framework for
representing various kinds of information efficiently and effectively will be the key for successful
hardware/software co-designed systems.
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Fig. 2 Schematic diagram of a self-organizing

analog neural processor.
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VLSI Neuroprocessors

Sabrina Kemeny

Center for Space Microelectronics Technology

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109

Abstract

Electronic and optoelectronic hardware implementations of highly parallel computing

architectures address several ill-defined and/or computation-intensive problems not easily

solved by conventional computing techniques. The concurrent processing architectures

developed are derived from a variety of advanced computing paradigms including neural

network models, fuzzy logic, and cellular automata. Hardware implementation
technologies range from state-of-the-art digital/analog custom-VLSI to advanced

optoelectronic devices such as computer-generated holograms and e-beam fabricated

Dammann gratings. JPL's Concurrent Processing Devices Group has developed a broad

technology base in hardware implementable parallel algorithms, low-power and high-

speed VLSI designs and building block VLSI chips, leading to application-specific high-
performance embeddable processors. Application areas include high throughput map-
data classification using feedforward neural networks, terrain based tactical movement

planner using cellular automata, resource optimization (weapon-target assignment) using
a multidimensional feedback network with lateral inhibition, and classification of rocks

using an inner-product scheme on Thematic Mapper data. In addition to addressing

specific functional needs of DoD and NASA, the JPL-developed concurrent processing

device technology is also being customized for a variety of commercial applications (in
collaboration with industrial parmers), and is being transferred to U.S. industries.

This talk will focus on two application-specific processors which solve the computation
intensive tasks of resource allocation (weapon-target assignment) and terrain based

tactical movement planning using two extremely different topologies. Resource

allocation is implemented as an asynchronous analog competitive assignment architecture
inspired by the Hopfield network. Hardware realization leads to a two to four order of

magnitude speed-up over conventional techniques and enables multiple assignments,

(many to many), not achievable with standard statistical approaches. Tactical movement

planning (finding the best path from A to B) is accomplished with a digital two-

dimensional concurrent processor array. By exploiting the natural parallel decomposition
of the problem in silicon, a four order of magnitude speed-up over optimized software
approaches has been demonstrated.
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(a) (b)

(c)
(d)

Signal propagation through array shown in white on map background (black indicates road): a) after 450

clock cycles, b) after 500 clock cycles, c) after 750 clock cycles, and d) after 1250 clock cycles.
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Photonics: From Target Recognition to Lesion Detection
Martin Marietta Corporation and Rose Health Care Systems

by Dr. E. Michael Henry, (303)977-7720
Martin Marietta Astronautics, MS FO330
P.O. Box 179, Denver, Colorado, 80201

Irltroduction -- Since 1989, Martin Marietta has invested in the development of an innovative

concept for robust real-time pattern recognition for any two-dimensional sensor. This concept

has been tested in simulation, and in laboratory and field hardware for a number of DoD and

commercial uses from automatic target recognition to manufacturing inspection. We have now

joined Rose Health Care Systems in developing its use for medical diagnostics.

The Concept -- The concept is based on determining regions of interest by using optical Fourier

bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters,

passing the enhanced regions to a neural network for analysis and initial pattern identification,

and following this initial identification with confirmation by optical correlation. The optical

scene segmentation and pattern confirmation are performed by the same optical module. The

neural network is a recursive error minimization network with a small number of connections

and nodes that rapidly converges to a global minimum.
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A Specific National Need -- The specific commercial application for which this Defense

technology is proposed is a medical diagnostics demonstration in analyzing screening

mammograms. Breast cancer is an ever-increasing problem that is striking women at younger

and younger ages. Recent statistics indicate that one in eight women will experience breast

cancer in their lifetimes--an increase from one in twelve a few years ago. One of the most

effective tools in the fight against breast cancer is early detection through the use of

mammography. In 1990, 17 million screening mammogram sets were generated. Based on

National Cancer Institute and American Cancer Society recommendations, 44 million sets should

have been processed. While there are several barriers to greater mammography participation,

one barrier is cost. Radiologist reading fees alone for screening mammograms amounted to $652

million in 1990 and are expected to grow to $1 billion by 1996. Statistics also show that early

detection of breast cancer not only saves lives, but significantly reduces the cost of the ensuing
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Photonics: From Target Recognition to Lesion Detection
by Dr. E. Michael Henry

treatment as well. Our goal is to reduce screening mammogram fees to increase participation, to

aid radiologists in finding a higher percentage of cancerous lesions, and to detect these lesions at

least a year earlier than is generally possible with current techniques.

The On-going Effort -- Martin Marietta and Rose Health Care Systems are conducting

demonstrations of the concept for mammogram processing. These demonstrations use an optical

processor simulator to detect and identify spiculated lesions -- one of three types of potentially

cancerous lesions commonly detectable in the human breast, and will be extended to detect the

other lesions as well. The effort will then conduct a full proof of concept through simulation and

hybrid digital/optical hardware for all three lesion types, prepare a system operational concept,

develop a total system prototype for evaluation tests, and prepare for FDA clinical trials and

manufacturing readiness. The Martin Marietta/Rose mammogram analysis system has the

potential to significantly reduce total mammography costs, while improving the quality of care

by ultimately functioning as a radiologist's aid as well as an automatic prescreener or a "second

opinion" system. Mammography is only the first of a number of applications to medical

diagnostics for which this technology could be key. We expect to expand its use to the analysis

of chest imagery, pap smears and other similar image and cytological diagnostics.

m

R
w

The Team -- The team is composed of Martin Marietta Photonic Systems as system developer

and team administrator and Rose Health Care Systems as partner and key medical advisor on

radiology and operational concepts. Optics and neural network experts from the University of

Colorado, the University of Dayton Research Institute, and Tactical Technical Solutions, Inc., are

providing technical support in pattern processing. Two nationally-known radiologists provide

additional expertise in mammogram analysis techniques, and the Eastern Cooperative Oncology

Group, a group of over 3000 cancer research professionals, provides guidance on this and other

diagnostic areas for which these techniques apply. Several local suppliers provide assistance in

the human-machine interface for medical diagnostic workstations, in clinical evaluation

requirements and techniques, and in system packaging.
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3D Artificial Neural Network (3DANN) Technology

A Status Report and Blueprint For The Future

W

[]

Irvine Sensors Corporation (ISC), working closely with JPL under

BMDO/ONR sponsorship, is developing a radically new neural computing

technology. Primarily aimed at discrimination and target recognition for BMDO

missile interceptor applications, it appears to have near term commercial

applicability to such problems as handwriting and face recognition, just to name

two. In its earliest form it will be able to perform inner product computation using

262 thousand 64x64 templates (weighted synapse arrays) where the 645 weights can

all be changed every milli-second. Internal switching provides an inherent

capability to zoom,, translate, or rotate the templates. The 3D silicon architecture is

manufactured on a commercial, high volume DRAM production line at very low

cost, enabling its commercialization. Two technology thrusts are beginning: In the

first, the 64 layer capability of 3DANN-I will be extended to 1024 layers and beyond.

In the second layer size will be shrunk to 2-3 millimeters to reduce layer costs t_

under fifty cents.

Our workshop goal is to expose this technology to the neural network

community as an emerging tool for their use and to obtain their desirement for its

future development.
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34m Antenna Elevation Pointing System

Commanded
Position

estimated antenna rate

Loop
Compensation

Antenna
rate

Reconstruction Torque Share

Compensation

estimated antenna rate

Hidden Markov
Model Calculations

m,

Parameter Estimation Model

P(Q-_oilcbt.T)
State

at Time t-T

Time Correlation Model
for State Dependence

/

1 Measured Observables/

,IJ

On-line System Modelling
and Parameter Estimation

(ARX model plusvariance estimates

Estimated
Parameters ._(t)

torque bias signal

Predicted Target

Ou_4_utput

Error Signal

_r

Symptom->Class Probability Mapping
(Neural Network)

Parameter/State Probability Model

Instantaneous
Probability State P(£Z--_il._(t))

Estimates

r

Hidden Markov
Model Calculations

p(s3=coil¢t)

State

at Time t

Hidden Markov
Model Calculations

Antenna
Structure

estimated antenna position

p(C'==c0il4)t+T)

State

Estimates
at Time t+T -

System Decision at time t
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SUMMARY OF EXPERIMENTAL RESULTS OBTAINED AT DSS-13 34M ANTENNA

IN REAL-TIME UNDER NORMAL AND FAULT CONDITIONS

m

Without Markov model

Neural

With Markov model

GaussianClass Gaussian

Normal Conditions 0.36 1.72 0.36 0.00

Tachometer Failure 27.78 0.00 2.38 0.00

Compensation Loss 34.21 0.00 43.16 0.00
All Classes 16.92 0.84 14.42 0.00

Neural

Percentage misclassification rates for Gaussian and neural models
both with and without Markov component.

R
i

m

U

J

Class

Normal Conditions

Tachometer Failure

Compensation Loss
All Classes

Without Markov model

Gaussian Neural

-2.44 -1.97

-0.40 -3.52

-0.82 -3.48

-0.87 -2.29

With Markov model

Gaussian Neural

-2.46 -4.24

-0.42 -4.22

-1.39 -4.71

-1.02 -4.34

Logarithm of Mean Squared Error for Gaussian and neural models
both with and without Markov component (more negative is better).
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Innovation and Application of ANN in Europe demonstrated by (/3Kohonen Maps

Karl Gossr
University of Dortmund

Faculty of Electrical Engineering
D 44221 Dortmund

Fax: x 49 231 755 4450

small: goser@luzi.e-technik.uni-dortmund.de

Extended Summary

One of the most important contributions to neural networks comes from Kohonen,
Helslnkl/Espoo, Finland, who had the idea of self-organizing maps in 1981. He
verified his idea by an algorithm Of which many applications make use up to now.
The impetus for this idea came from biology, a field where the Europeans have
always been very active at several research laboratories. The challenge was to
model the self-organization found in the brain. Today one goal is the development of
more sophisticated neurons which model the biological neurons more exactly. They
should come to a better performance of neural nets with only few complex neurons
instead of many simple ones.

A lot of application concepts edsed from this idea: Kohonen himself applied It to

speech recognition together with a japanese company, but the project did not
overcome much more than the recognition of the numerals one to ten at that time. In
the last years he is generating artificial music via self-organizing maps. A more
promising application for self-organizing maps is process control and process
monitoring. In this field Goser, Dortmund, made several proposals which concern

parameter classification of semiconductor technologies, design of integrated circuits,
and control of chemical processes. His graduates as Speckmann at Tuebingen
broadened the field of applications. Rltter applied self-organizing maps to robotics.
Germond, MANTRA center at Lausanne, introduced the neural concept into electric
power systems.

At Dortmund we are working on a system which has to monitor the quality and the
reliability of gears and electrical motors in equipments installed in coal mines. The
results are promising and the probability to apply the system in the field is very high.
A special feature of the system is that linguistic rules which are embedded in a fuzzy
controller analyze the data of the self-organlzlhg map in regard to life expectation of
the gears. It seems that the fuzzy technique will introduce the technology of neural
networks in a tandem mode. These technologies together with the genetic algorithms
start to form the attractive field of computational intelligence. - Von $eelen, Bochum,
develops a system with self-organizing maps that can monitor breaks and plugs In
cars on this basis, too. Rueckert, Hamburg, and Ultsch, Marburg, try to combine the
self-organizing map with an expert system instead of a fuzzy network, so that the

total system exploits the advantages of both implicit and explicit rules.
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,Several research teams try to Improve the theory of self-organizing maps, e.g.
Cotrell, Paris, published important facts about the consistency of self-organisation,
Tryba and Kansteln, Dortmund, are developing a new algorithm which bases on
differential equations. Herault and Demartlnes, Grenoble, developed the vector
quantization from the self-organizing concept. The vector quantization shows
Impressive results at the prediction of catastrophic failures. They also Invented the
interesting concept of separation of sources by simple neural networks which may
find applications in hearing aids and noisy machineries.

A further effort alms to an implementation in hardware: Ramacher at Siemens,
Munich, presented the Neural Computer Synapse which has a high flexibility and a
remarkable high performance in regard to 108 CUPS (Connection Updates Per
Second). Siemens AG is introducing Synapse I into the market now. There are
some activities about neural ASICs: Rueping, Dortmund, is representing the
interesting concept BISOM in digital technique at which a simplified and adapted
algorithm reduces the number of required transistors. Vittoz, Neuchatel, worked out
an analog circuit for self-organizing maps which can be used in mobile and portable
systems. Del Cored, Turino and Murray, Edinburgh, show that the pulse modulaUon
techniques have decisive advantages for integration in analog_technique.

The work on selforganizing maps is supported by national governments and by the
European Union, as in the ESPRIT project NERVES, PYGMALION, GALATHEA,
ANNIE, NEUFODI, CONNY, ELENA-NERVES II etc. The support includes small
companies, too, most of which are in High-Tec centers from which e penetration of
the new technology into the established industries should occur.

At the moment there are a lot of conferences in Europe in this field: ICANN,
NeuroNimes, MicroNeuro, IWANN, ESANN, and several local workshops. Some
conferences are strongly bound to roman and other to anglo-saxon regions. The
high number of conferences does absolutely not relate to the number of industrial
applications which are quite poor up to now. One reason for so many conferences
comes from the role of universities which is far from industrial challenge: the
promotion at universities needs papers which can be produced in the most easiest
way on an innovative field and on conferences which need participants.

In conclusion we have to say that the industrial situation on the field of artificial
neural networks is poor and difficult in Europe. One reason is that there are no or
only little activities in the field of classical data processing in Europe. The strategy of
many politicians is, however, that Europe gains a better position in a new technology
as neuroinformatics, since in classical fields there are barely no chances for
newcomers. There are a lot of soft applications of neural nets especially developed
at application oriented laboratories as FhG(Seitzer, H0sticka)i SICAN (Weinert) and
IMS (Hoeffiinger) in Germany. At the moment they concentrate their work on the
electronic eye and on automotive applications The academic work far from real
economic pressure Is overwhelming_ We can only hope that the gap between
academic and industrial world in Europe will diminish in future and the activity will
grow on the industrial side, especially for our own interest to become more
successfully in the important economical sector of information technologies.
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NEURAL NETWORK CLASSIFICATION OF CLINICAL NEUROPHYSIOLOGICAL
DATA FOR ACUTE CARE MONITORING

JOSEPH SGRO

Alacron, Inc., 71 Spit Brook Rd., Nashua, NH 03060 and The Neurological Institute of New York, 710 West
168 Street, New York, NY 10032

INTRODUCTION

The purpose of neurophysiological monitoring of the "acute care" patient is to allow the accurate
recognition of changing or deteriorating neurological function as close to the moment of occurrence
as possible, thus permitting immediate intervention.

EEG MONITORING

The electroencephalogram is a sensitive indicator of cerebral ischemia. Slowing of the EEG in man

occurs when regional cerebral blood flow drops to 16-22 ml/100g/min., and severe voltage
attenuation results if flow is further reduced to 11-19 ml/100g/min. (Trojaborg & Boysen 1973).
This observation has lead to the use of EEG monitoring in clinical settings in which cerebral
perfusion is at risk. The utility of EEG monitoring during carotid endarterectomy has been

demonstrated (Chiappa and Burke, 1979; Myers et al, 1980), and it is routinely used in some major
centers to determine the necessity of shunting. During cardiopulmonary bypass forcardiac surgery,
the EEG also has been shown to be a sensitive indicator of the effects of hypotension as well as air

embolism (Prior, 1979; Stockard et al, 1964). The Practice Committee of the American Academy of
Neurology has advised that "EEG monitoring during complex surgical procedures has become an
established procedure to safeguard cerebral perfusion" (Pedley and Emerson, 1984).

Recently, a number of kEG monitoring system have been proposed. These are either primarily
displays of data reduced EEG, processed by FFTs (Fast Fourier Transforms) or AR (Autoregressive),
or heuristic rule based detectors for specific patterns derived from processed or raw EEG.

In our view, the limitations of automated EEG analysis systems heretofore developed are
consequences of either the use of data reduction, which obscures morphological characteristics of
EEG waveforms critical for their identification, or the reliance on rule based systems which are
limited by their design to detect a limited repertoire of kEG patterns and may have excessive false
classification rates.

For an EEG monitoring machine to be clinically acceptable for use in ICU or operating room
environments, the following four requirement should be satisfied:

1. It must detect artifacts to avoid false interpretation of EEG waveforms.

2. It must be able to identify unambiguously designated patterns and changes in patterns in
the EEG.

3. It must have provision for multiple monitoring channels.
4. It must be able to perform these functions in real-time.

EVOKED POTENTIAL MONITORING

Evoked potentials (EPs) are electrophysiologic markers of transmission of sensory signals through
afferent neural pathways in the central nervous system following auditory, visual, and
somatosensory stimulation. They are widely used in clinical neurology for detection and localization

of neural lesions (Chiappa, 1990). Brainstem auditory evoked potentials (BAEPs) and somatosensory
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evoked potentials (SEPs) are relatively resistant to anesthetic agents and levels of patient arousal,

and are therefore ideally suited to monitoring the integrity of the central nervous system of patients

in "acute care" settings. The purpose of evoked potential monitoring of the "acute care" patient is

to allow the accurate recognition of changing or deteriorating neurological function as close to the

moment of occurrence as possible, thus permitting immediate intervention.

BAEPs are widely used to monitor acoustic nerve function during surgery in the cerebellopontine

angle (CPA), primarily for resection of acoustic neuromas and other CPA tumors, where the surgery
threatens auditory nerve function. They are sensitive to mechanical disruption of the auditory

nerve, as well as cochlear and eighth nerve ischemia. Intraoperative BAEP monitoring has been

recently demonstrated to be associated with significantly decreased postoperative morbidity (Radtke

and Erwin, 1988). BAEPs are also sensitive to disruption of and ischemic insult to structures within

the brainstem auditory pathways, and hence are employed during other procedures that risk

brainstem injury, including surgery for basilar artery aneurysms, posterior fossa arterio-venous

malformations, and intrinsic brainstem tumors (Friedman and Grundy, 1987; Radtke and Erwin,

1988; Abramson et. al. 1985).
SEPs are sensitive to parenchymal damage directly involving the posterior columns, as well as

compression, mechanical distraction, and cord ischemia. SEP monitoring during scoliosis surgery
has become widely accepted, and has virtually replaced the "wake-up" test. SEP monitoring is also

employed to monitor the integrity of the spinal cord during cross clamping of the aorta, and

neurosurgical procedures involving the spinal cord and its blood supply (Friedman and Grundy,

1987; Loughnan and Hall, 1989; Emerson and Pedley, 1988). Additionally, cortical components of

the SEP can be used to assess integrity of the cerebral cortex during procedures requiring temporary

occlusion of cerebral arteries (Buchtal and Belopavlovic, 1988).

In order to achieve widespread use and utility, an automated EP monitoring system should have:

1. The ability to detect artifacts to avoid false interpretation of EP waveforms.

2. The ability to unambiguously identify designated EP waveforms.

3. The ability to measure the amplitudes and latencies of designated EP waveforms.

4. The capability of monitoring multiple EP channels in real time.

The Table below lists the major techniques that have been used for automated EP analysis. To

date, none of these is in widespread use. This reflects, in large part, their collective sensitivity to
artifacts and noise and their inconsistent ability to correctly track the waveform of interest , its

amplitude, or latency.

Methods
Discriminant methods

Template methods

Derivative methods

Rule based methods

4

Requires a priori definition of
features

Requires a priori template
definition

Extremely noise sensitive

Very sensitive to morphology
variations

Reference
Clarson Liang (1989)

Childers et al (1987)

Miskiel and Ozdamar (1987)

Boston (1989)
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NEURAL NETWORKS

INTRODUCTION

PDP networks, also known as neural networks, have recently attracted widespread interest and

application in diverse areas of computerized pattern recognition, including handwriting, voice and

visual pattern recognition systems (Levinson et. al, 1983; Devijer and Kittler, 1982; Blake and

Zimmerman, 1987; Lang and Waibel, 1990; Rajavelu et. al., 1989; Buhmann et. al., 1989). Neural

networks are structured as arrays of interconnected units which have the capability of "learning" by

examples causing functional modification of interconnections. The units have functional properties

modeled after neurons, and interconnections modeled after synapses.

An important feature of neural networks is that it is not necessary to precisely describe the patterns

to be recognized. Rather, the network is "trained" by presenting it with examples of patterns to be

recognized. While an expert recognition system may be intuitive, or difficult to articulate, the

training mechanism only requires examples of classified data (output patterns). In contrast to most

other methods, the structure of neural networks allows training to take place in the absence of a

specific heuristic method for each feature to be recognized.

The major advantage of neural networks is that they are able generalize, and adapt to distortion or

noise without losing their robustness. Neural networks are capable of correctly identifying input

patterns that are morphologically similar to but not identical to the patterns on which they were

trained. The latter feature makes neural networks ideally suited to EEG and EP analysis which

requires correct identification of selected neurally generated signals based upon waveform

morphology, and often in the presence of considerable accompanying noise. Neural networks thus

have the advantage of allowing an efficient unified system for detection and identification of

artifacts, abnormalities, and, EP's waveform latency in the presence of noise. Our results below

demonstrate the feasibility of the use of neural networks for EEG/EP analysis.

IMP LEMENTA T/ O N

A. NETWORK ARCHITECTURE

We initially implemented a fully interconnected feed forward net with a selectable number of layers

and nodes. We used three and four layer networks (i.e. one and two hidden layers) for both EEG

and EP analysis. All data processing was performed on AT compatible computer with an Alacron

AL860 coprocessor board. The AL860 board uses a 40 MHz Intel i860 RISC processor (80

MFLOPS) and provides 64 MB of memory.

OUTPUT LAYER

HIDDEN

LAYER 2

HIDDEN

LAYER 1

INPUT LAYER
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The net initialization is achieved using fixed pseudo-random, unique pseudo-random, seeded pseudo-

random or 0 values. The net size, the net structure, the convergence function, the transfer

function, and the initialization mode are user selectable at initiation of training. We used nets

ranging in size from 512 to 8192 input nodes, hidden layer sizes of between 5 and 500 nodes, and

an output layer of less than 20 nodes. The transfer function used was the logistic sigmoid transfer

function.

Additionally, we implemented for EP analysis a probabilistic neural network (PNN) as described by

Specht (1990) (Figure below), a reduced coulomb energy (RCE) neural network, closely related to

PNNs, and a discriminant pattern recognizer (Bow, 1984) .

m

U

D_CISION

REGIONS D

O O

DATA POINTS

B. NETWORK TRAINING PARADIGM

Training was achieved using back propagation via modified steepest descent (Rumelhardt, 1987).

This entails multiplication of the input values by the interconnection weights, calculation of each

layer's output, and propagation of the outputs forward through each successive layer of the

network with the calculation of the mean squared error between the output and the desired output.

At the end of each training cycle, which consists of a complete presentation of all patterns in the

training set, the total calculated error was propagated backwards and the adjustment of the

individual weights was made, as outlined in Rumelhardt, 1987. Usually, we obtained an initial

pattern match within approximately 50 training cycles using several hundred test patterns, with full

convergence taking up to hundred cycles. The network ran entirely in RAM memory on the 1860,

with an optimized assembly language floating point dot product requiring approximately 10 to 30

minutes per training cycle.

C. NETWORK TESTING PARADIGM

For testing, input data is presented to the network without weight adjustment. The calculated

output of the neural network was compared to the expert classification to determine if the
classification was successful. Results were then tabulated, and the classification percent correct

was calculated.

Separate methods of validation were used for large (> 100 epochs) and small (< 100 epochs) data

sets. For large data sets, the set is split into two subsets - one for training and the other for

testing. For small data sets the "holdout" method is employed. A single epoch is held out, and the
network is trained on the remaining epochs. The withheld epoch is tested against the trained

network. This process is repeated for all epochs in the data set (Specht, 1990; Marchette and

Priebe, 1987; Maloney, 1988).
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EEG NEURAL NETWORKS

Neural network classification of EEG was investigated using data reduced input via the FFT or an AR
model and also raw EEG data.
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A. FFT

Input data was decimated to 512 points per channel per 10 second epoch. These data were

converted to 512 point power spectra. This is accomplished by applying a standard FFT and taking
the squared magnitude of the coefficients. The spectra were then used as input to the neural
networks.

B. AR

Input data was initially modeled by a modified covariance ARMA autoregressive moving average
model, a Burg model, and a Prony model. The ARMA model was used for classification of EEG

because we observed that it consistently produced the most stable and accurate spectra. The
ARMA model of EEG consisted of two real coefficients and one hundred complex coefficients. This

exceeds the number of coefficients customarily employed to describe EEG spectra (Jansen, 1985).
These coefficients were used to compute a 512 point power spectrum. The spectra were the used
as inputs to the neural networks.

C. RAW EEG DATA.

A limitation of the use of raw EEG for neural network input is that the data is scale and translation

dependent, but EEG interpretation is largely translation and scale independent. Our initial solution to

this problem was to train the neural network on rotated and scaled versions of each training epoch.
This approach, however, would have resulted in a prohibitive increase in the required number of

training epochs. For example, in investigations described below, we used typically 150 training
epochs. Each epoch would be transformed into 2560 translated and scaled versions, resulting in a
total of 384,000 training epochs [256 translations and 10 amplitude scale levels]. Training the
neural network with this number of epochs would not have been practical.

We investigated structural modifications to the neural network to make it immune to translation and

amplitude variations in the training set. We implemented a modification of the method of Goggin et
al (1991) which preprocesses the epoch into a form that is not effected by translation and
amplitude variations. Each epoch contains typically 16 channels, each of which is a time series of
512 data points. Each channel is transformed into a translation and scale invariant form as shown
in equation 1, below:

_-=_X_ - X_,oD_k÷i._ )

_/_ /¢=-0

_'=0

The transformed data is then processed by the back propagation neural network. Neural network

employing polynomial transformed data have been named "higher order neural networks" (HONN).

EP NEURAL NETWORKS

In all cases, input to the recognition software consisted of raw 1024 point per channel (both
replications). We implemented a fully interconnected feed forward net with a selectable number of
nodes (Figure above). The neural network had four layers (i.e. two hidden layers).
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The desired outputs were presented to the network as ones and zeros to indicate normal, abnormal,

or uninterpretable. Latency and amplitude data were encoded as eight bit binary values. An output
of the network was assigned to each bit of the binary value. BAEP and SEP latencies where
encoded after multiplying by 10, or 0.1 msec per unit. Amplitude data was encoded as eight bit

binary values, 0.1 microvolts per unit.

The interconnection weights of the net were initialized to small random values using a random

number generator. We used nets ranging in size from 1024 to 8192 input nodes, and an output

layer of less than 100 nodes. First and second hidden layers contained 512 and 256 nodes
respectively. The transfer function used was the logistic sigmoid transfer function.

Network training was achieved using back propagation via modified steepest descent as described

above. Usually, we obtained an initial pattern match within approximately 50 training cycles using
several hundred test patterns, with full convergence taking typically one hundred cycles. The
network ran entirely in RAM memory on the 1860, with an optimized assembly language floating

point dot product requiring approximately 10 to 30 minutes per training cycle, or about 4 to 12

hours for full convergence.

For testing, input data is presented to the network without weight adjustment. The calculated
output of the neural network was compared to the expert classification to determine if the
classification was successful. Results were then tabulated, and the classification percent correct
was calculated. For each data sets the "holdout" method described above was employed.

In addition to back propagation, we also implemented and evaluated RCE and PNN networks.

NEURAL NETWORK RESULTS

EEG CLASS/F/CA TION RESULTS

All results presented below were obtained using a four layer network (i.e. two hidden layers). We
observed that when a sufficient number of nodes were present in the network, training required less
than 100 passes over all the epochs in the training set In all cases the net converged and 100%

correct identification of the training set was obtained prior to testing.

In all cases, EEG pattern classification using raw EEG was superior to that using FFT or AR input.
Furthermore, the HONN outperformed the standard neural network, producing excellent results in all

cases, Typical results obtained using the small data set paradigm are illustrated in Table 2, below.
In the table, EF refers to eye flutter, IRS to intermittent rhythmic generalized slowing, SH to focal

sharp waves, CPD to continuous polymorphic delta, M to muscle artifact and NL to normal. The
network size designation in the Table is as follows: number of nodes in the input layer X number of
hidden nodes in first hidden layer X number of hidden nodes in the second hidden layer X number of

nodes in the output layer.
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Network
Size

Channels

Data Types

EEG Test Patterns

EF vs. NL RS vs. EF RS vs. EF SH vs. CPD SP vs. NL SP vs. M
512x20x 512x20x 1024x20x 2048x20x 8192x50 8192x50
10x2 10x2 10x2 10x2 xl0x2 xl0x2
1 1 2 4 16 16

Percent Correct Classification

FFT 57 50 55 52 60 62

AR 52 45 50 48 52 55

Raw EEG 82.5 75 85 75 80 75

HONN AR 75 70 65 60 75 76

HONN FFT 80 65 78 75 78 79

HONN Raw 95 90 95 90 95 95

z:::

The above results indicate that superior classification is obtained using raw EEG input when

compared to either AR or FFT spectra. We speculate that the inferior performance of AR and FFT
based methods is attributable to information loss inherent in these spectral representation of the
EEG waveforms. Our results further indicate that use of multiple channels (IRS vs. EF comparisons)

improves performance. The best performance, achieving level of EEG pattern recognition accuracy
suitable for clinical applications, was obtained using the high order neural network (HONN)
methods.

Performance of the our initial, non-translational invariant, network (STD) and the high order neural
network (HONN) using raw EEG data was further evaluated using the large data set paradigm to test
classification of states of arousal, abnormalities, and artifact identification. For state, 150 sixteen

channel test epochs were used. The size of the network was 8192 x 200 x 50 x 3. Results are
shown below.

State % Correct Classification

STD HONN

Wake 82 93

Stage I Sleep 86 97

Stage II Sleep 66 95

! ,

v

Again, using the large data set paradigm, 150 test epochs were classified as normal or
demonstrating any of the following "abnormalities": continuous slowing (any type), intermittent
slowing (any type), slow alpha, or uninterpretable. The network size was 8192 x 200 x 50 x 5.
Results are shown in Table 4, below.

Category % Correct Classification

STD HONN

Normal 82 98

Intrm slowing 70 93

Cont slowing 70 97

Slow alpha 77 92

Uninterpretable 50 98

Finally, for detection of the presence and classification of types of artifacts, 150 sixteen channel
test epochs were used. The size of the network was 8192 x 200 x 50 x 6. Results are shown
below.
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Artifact

None

% Correct Classification

STD HONN

70 97

Eye Flutter 90 97

Eye Blinks 80 95

Horiz Eye Mnts 66 98
Muscle 73 98

Movements 68 98

The above results confirm the suitability of the HONN network for accurate identification of a wide
variety of EEG waveform patterns.

EVOKED POTENTIAL CLA SSIFICA T/ON RESULTS

L I.A TENCY MEASUREMENT RESULTS

The Table below depicts the latency measurement errors for wave I, III and V of the BAEP, as made
by three different neural networks and a discriminant method. All neural network methods
performed well, with errors close to human measurement error on BEAPs recordings, which is
approximately 0.1 - 0.2 MS or 1-2% of the standard 10 msec sweep. The discriminant methods

was not as successful. The most accurate classification was achieved by the back propagation
method.

BAEP Latency Error Std Dev
Milliseconds BP RCE PNN Discr # Cases
Ii 0.20 0.22 6.24 1.00 172
III 0.30 0,33 0,40 1.20 168

V 0.30 0.33 0.30 1.50 178

The Table below presents the classification results for median.nerve SEP data. The latency
measurement accuracy achieved by all neural network methods was excellent. The back

propagation performed best. : The latency measurement error of the BP network was similar to
human measurement errors, which is approximately 0.5 MS, or 1% of the standard 50 msec

sweep. Again the discriminant method performed poorly.

SEP Latency Error Std Dev
Milliseconds BP RCE PNN Discr # Cases
N9 0.30 0.33 0.45 1.10 221
P14 0.70 0.77 1.05 2.10 218
N20 0.30 0.33 0.45 4.20 213

Similarly, the Table below illustrates classifications for VEPs. Classification accuracy was excellent
for all neural network techniques, the best performance being achieved by the back propagation
method. The 1 msec error for BP is 0.5% of the standard 200 msec sweep. The discriminant

method performed poorly.
VEP Latency Error Std Dev

Milliseconds BP RCE PNN IDiscr I# Cases I
Ieloo 1.00 1.10 1.50 5.10 1270 I
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//. AMPLITUDE MEASUREMENT RESULTS

The Table below presents our amplitude measurement results using BAEP data. Accurate amplitude
measurement were made by all neural network methods tested. The best performance was
achieved by the back propagation network and the discriminant method performed poorly.

BAEP Amplitude Error Std Dev

micro I BP I RCE PNN Discr #Cases

I V I 10.08 0.48 0.62 1.01 101
Similarly, the Table below presents our amplitude measurement results for SEP data.

SEP Amplitude Error

micro BP RCEI PNN Discr # Cases
N9 0.32 0.38 0.47 0.71 105
P14 0.15 0.72 0.75 1.17 105

N20 0.23 0.51 0.50 0.71 105

Our amplitude measurement results are presented in the Table. Again, the back propagation

method provides the most accurate amplitude measurement.
VEP Amplitude Error Std Dev

micro BP RCE PNN Discr # Cases I

IP100 1.20 1.23 1.32 2.34 270 I

III. CLASS/F/CA T/ON RESULTS

The Tables below present the accuracy by which the three neural network and the discriminate
method classified EP recording of the three modalities and "Normal", "Abnormal" or

"Uninterpretable". The best performance was achieved by the back propagation method, which
classified 94% of EP studies in agreement with the "expert" reader. Additionally, ninety percent of
records that were uninterpretable due to noise contamination were correctly identified.

BAEP

% Correct BP RCE PNN Discr # Cases
Result
Normal 95% 91% 82% 56% 96
Abnormal 92% 87% 80% 54% 91

Uninterpr 90% 80% 80% 60% 10
Overall 93% 89% 81% 55% 197

SEP

% Correct BP RCE PNN Discr
Result
Normal 97% 89% 84% 64%
Abnormal 93% 86% 82% 61%

Uninterpr 90% 83% 77% 60%
Overall 95% 87% 82% 63%

# Cases

155
30
44

229

# Cases

166
45
95

3O6

VEP

% Correct BP RCE PNN Discr
Result
Normal 97% 93% 91% 63%
Abnormal 91% 89% 87% 60%

Uninterpr 91% 87% 85% 59%
Overall 94% 91% 89% 61%

i!
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/V. MUL T/CHANNELRESULTS

The above results were obtained by presenting the neural networks with multiple channels (3 for
BAEPs, 4 for SEP, and 6 for VEP). The effect of multiple channels on the performance of neural
network classification was examined by omitting channels which did not specifically contain a
designated waveform of interest, but provided information which is used in human waveform

recognition. Specifically, Ac-Cz and Ai-Ac channels for BAEPs, and SC5-Fpz for SEPs. In all cases,
inclusion of these "extra" channels irnpr0+ved ctassificationand me-asurement results slightly. In
some cases, major improvements were linked to the use of extra channels. For examples, use of
three channel resulted in a 24% improvement in wave III amplitude measurement.

BAEPs

% Number of channels
Correct L1 ._... 2 3
Result
Norm 94% 95% 95%

Abnormal 90% 91% 92%
Uninterp 90% 90% 90%

BAEP Latency Error
Number of channels

msec 1 2 3
Wave

0,23 0.21 0.20
III 0.53 0.42 0.40
V 0.32 0.33 0.30

BAEP Amplitude Error
Number of channels

u-Volts 1 2 3
Wave

0.32 0.30 0.30
III 0.42 0.33 0.32
V 0.34 0.27 0.26

SEP Classification accuracy
% Number of channels

Correct 3 4
Result
Norm 97% 97%
Abnormal 93% 93%

Uninterp 87% 90%

SEP Latenc' Error

msec
Wave
N9

P14
N20

Number of channels
3 4

0.31 0.30

0.89 0.75

0.32 0.30

=_=

M

il

M

m

m

q

I

W

lel

V

N

I

I

11

+--='2

W

lO4
I

i

J



L

E

|

| .

!

• s ,

[

=

P

F

F

CONCLUSIONS

Our results confirm that:

1. Neural networks are able to accurately identifying EEG patterns and evoked potential

wave components, and measuring evoked potential waveform latencies and amplitudes.

2. Neural networks are able to accurately detect EP and EEG recordings that have been

contaminated by noise.

3. The best performance was attained consistently with the back propagation network for

EP and the HONN for EEGs.

4. Neural network performed consistently better than other methods evaluated.

5. Neural network EEG and EP analyses are readily performed on multichannel data.
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Smart Vision Chips:

An Overview
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Christof Koch

California Institute of Technology

May 1994

1. Four Working Analog VLSI Vision Chips

(a) Time-Derivative Retina (Delbriick & Mead)

(b) Zero-Crossing Chip (Bair & Koch)

(c) Resistive Fuse (Harris & Koch)

(d) Figure-Ground Chip (Luo, Koch & Mathur)

2. Work in Progress

3. Conceptual and Practical Lessons Learned
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Silicon Retina that Computes a Pure Temporal Derivative

T. Delbriick and C. Mead, 1991

• Array of 68 by 43 adaptive, high-gain, logarithmic

photoreceptors, implemented in analog CMOS.

• No spatial interactions.

• Array has low offsets and consumes about 4 mW

power.

• Array has very small fill-factor (< 3%).
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1-D Chip that Computes Edges

W. Bair and C. Koch, 1991

• 64 pixel, logarithmic photoreceptors in analog CMOS.

• Each resistive grid implements low-pass filter G(w) =

1 where £ is given by the resistances.

• Chip computes thresholded zero-crossing between two

resistive networks (implementing a band-pass filter).

• Output is 63 bit word, indicating presence of edge

between adjacent pixels.
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Smoothing 2-D Data in the Presence of Discontinuities

J. Harris, C. Koch and J. Luo, 1990

• Algorithmic justification: If values of some variable

(for example, depth, hue, intensity) between two ad-

jacent pixels is similar, then smooth away the differ-

ence (since it is most likely caused by unavoidable

image noise). If the difference is above a threshold,

then preserve it, since it is most likely caused by a

discontinuity between the two locations.

These constraints can be implemented within a single

two-terminal device, the resistive fuse.

• Device has nonlinear I-V relationship, similar to an

electrical fuse.

• Deterministic annealing can be carried out by dy-

namically adjusting the I-V relationship.

• Performance of a 20 by 20 pixel analog CMOS chip

is shown.
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Segregating a "Figure" from "Ground"

J. Luo, C. Koch and B. Mathur 1992

• 48 by 48 pixel resistive grid with configurable switches

in analog CMOS.

• .Off-chip circuitry detects--possibly incomplete--cdges

and sets switches appropriately.

• Voltage inside one (or more) fgures clearly demar-

cates them from surrounding pixels.

• Resistive network has natural boundary completion

property.
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Work in Progress: Computing Motion

• Differential methods to compute velocity (e.g. v =

-It�Ix) are numerically ill-conditioned and require

very accurate components.

• Correlation methods to estimate velocity (e.g. I(x, t) ×

I(x + Ax, t + At)) are robust but expensive in VLSI.

• Computing velocity in the temporal pulse domain

appears very promising (Sarpeshkar, Bair and Koch,

1993).

• Special-purpose analog motion sensors can be built

for estimating time-to-contacts observer head-

ing_ discontinuities in the optical flow and

other qualitative features of the optical flow field.

• Exploiting Green's theorem

JA V. V(x, y)dxdy = fc V . nds

to compute 7 (time-to-collision) in a very robust man-

ner (using a single sensor).
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Work in Progress: Neuromorphic Systems

Carver Mead emphasizes analog VLSI as a medium

to model and understand the nervous system (syn-

thetic neurobiology).

Mahowald and Douglas (1991) have successfully built

pyramidal cells in analog CMOS, including den-

dritic trees, EPSPs and IPSPs and nonlinear mem-

brane conductances.

Koch, Douglas, Sejnowski and Lisberger are involved

in long-term project to build a complete oculo-motor

system (including two retinae on movable platform,

superior colliculus, brain stem nucleus for eye plant,

and cortical areas) based upon the visual system of

primates.
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What Lessons Have We Learned

• Conception, design and fabrication of smart vision

chips must go hand-in-hand with the design of the

appropriate vision algorithms.

• It is crucial to understand what types of computa-

tions map naturally onto analog hardware and which

ones are better suited to Turing universal digital

machines (e.g. motion analysis).

• Important to integrate adaptation and learning abili-

ties at all levels of the circuitry (from photoreceptors

to output).

u

H
g

W

m
m

W

u

m

W

_m

m

W

tim

lip

l

m

134

n

I

n

m

U



Christof Koch: Smart Vision Chips

What Should We Do

m

y_

• Principal limitation of today's circuits is not small

array size (< 100 × 100 pixels) but lack of further

on-chip processing power.

Do not emphasize development of very costly basic

fabrication and circuit technology at the expense of

inexpensive algorithmic development and implemen-

tation.

Development of interchip communication protocols

(e.g. Mahowald and Mead's event-driven address-

ing scheme).

Design not just smart

tonomous systems.

add-on's, but complete, au-
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Failure of Mars Probe

Blamed on Fuel Leak
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RESEARCH MISSION

•Development of computer assisted diagnostic (CAD)

methods for improved diagnosis of medical images

including digital x-ray sensors and tomographic imaging
modalities.

•The CAD algorithms include advanced methods for _-

adaptive nonlinear filters for image noise suppression, ....

hybrid wavelet methods for feature segmentation and
enhancement and high convergence neural networks for __
feature detection and VLSI implementation of NN for real 6

time analysis. These methods are designed for fully ---
automatic CAD methods that are operator, image and

sensor independent for universal application for medical
image analysis. J

•Implementation of CAD methods on hospital based

picture archiving computer systems (PACS) and

information networks for central and remote diagnosis i.e.
for cost effective health care delivery and standardization
of diagnosis.

•Collaboration with defense and medical industry, NASA
and Federal Laboratories in the area of dual use

technology conversion from defense or aerospace to
medicine.
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SPECIFIC PROJECTS INVOLVING NEURAL
NETWORKS

•Development of computer assisted diagnostic (CAD)

methods for breast cancer screening using digital
mammography. Projects include NN of different

architecture tailored for each project:

o

Automatic detection of microcalcification

Detection of masses or parenchymal
distortion

Recognition of normal vs abnormal

mammograms

tissue

•Development of nuclear medicine imaging methods for

detection of beta particles used for antibody therapy or
imaging of positron emitters.

lo Order statistic neural network for image
resolution restoration based on systems physical
response characteristics

•Development of MRI segmentation techniques using
backpropagation and cascade correlation neural networks
for tissue characterization.

Automatic segmentation of tumor volumes
Surgery simulation
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CURRENT COLLABORATORS:
FEDERAL/INDUSTRY

.

NASA Jet Propulsion Laboratory (JPL), Pasadena,
California. Neuroprocessing and Analogue
Computing Devices (NACD).

Topic: Real time analysis of digital mammograms
using VLSI implementation of NNs.

NASA Ames.

(SETI), Moffett Field, Califomia. High

Microwave Survey Project.

Topic: Detection of weak signals
mammograms for microcalcification
detection.

Search for extraterrestrial intelligence
Resolution

in digital
and tumor

DOD. Navy Surface Warfare Center (NSWC),

Dahlgren, Virginia. Advanced Computations
Technology Group.

Topic: Pattern Recognition methods in digital
mammography for identification of suspicious areas.

E-Systems. Garland Division, Dallas, Texas.

Information Technology Systems.
Topic: Algorithm design and real time parameter

optimization in digital mammography.

Fischer Imaging, Denver, Colorado & Nanoptics,
Gainesville, Florida.

Topic: High resolution direct x-ray digital detection.
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Summary

Image compression for both still and moving images is an extremely important area of investigation, with
numerous applications to videoconferencing, interactive education, home entertainment, and potential ap-
plications to earth observation, medical imaging, digital libraries, and many other areas.

In this paper we describe our work on a neural network methodology to compress/decompress still and

moving images. We use the '_point-process" type neural network model we have developed [12, 13, 16]
which is closer to biophysical reality than standard models, and yet is mathematically much more tractable.

We currently achieve compression ratios of the order of 120 : 1 for moving grey-level images, based on a
combination of motion detection and compression. The observed Signal-to-Noise-Ratio varies from values

above 25 to more than 35. Our method is computationally fast so that compression and decompression can

be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying
compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will

avoid retransmitting portions of the image which have varied little from the previous frame.

Further improvements can be achieved by using on-line learning during compression, and by appropriate
compensation of non-linearities in the compression/decompression scheme. We expect to go well beyond the
250 : 1 compression level for color images with good quality levels.
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*Mr Sungur's work was supported by a NATO Science Fellowship at Duke University administrated by The Scl,entific and

Technical Research Council of Turkey (TUBITAK), on leave from Department of Electrical and Electronics Engineering, Middle
East Technical University, 06531 Ankara, Turkey
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1 Introduction

As the volume of imaging data increases exponentially in a very wide variety of applications - including

remote sensing, earth observation, medical imagingl digital libraries and documents, HDTV, entertainment
and film, and videoconferencing - and as the needs for storing, retrieving and transmitting images expand,

digital image compression is becoming an even more crucial technology. Many of these application areas
- including earth observation, videoconferencing and many military applications - deal with sequences of
images which represent some form of motion. For instance, sequences of pictures taken by a satellite each
time it passes over nearly the same stretch of territory, after appropriate repositioning and compensation,
are successive instances of the same scene containing changes due to the motion of objects (vehicles, for

instance), or due to changing meteorological conditions. Thus compression can take great advantage of the
fact that image sequences need only keep track of changes which occur from one frame to the next.

In some areas (such as medical imaging) it is more customary to deal with grey-level images. In other areas of
application, one deals overwhelmingly with colour images (as in entertainment). The quality of a processed
or compressed image is judged quite differently, whether one deals with grey-level or with colour. In the
case of color, acceptable image quality will largely depend on the application. For instance, in HDTV one
would be unhappy with a change in skin pigmentation (a greenish face does not look too good ...), while the

change in a dress' colour may not matter too much.

Lossless compression is adequate when low compression ratios are acceptable. Very substantial compression
ratios can only be achieved with lossy compression schemes. Many applications will accept lossy compression,
as long as the resulting quality is good. In some critical applications - such as medical imaging and mihtary
observation - loss may not be tolerated. However even in those applications, compressed versions of archival

images may be conveniently used for remote interrogation and fast access. The aim is of image compression
is to encode images or image sequences into as few bits as possible with a decoding mechanism which
reconstructs the original image with an acceptable visual and/or informational quality. Another issue in

image compression and decompression is its speed, especially in real-time applications, or in those in which
the rate at which the source produces data is very high. It is therefore often important to be able to carry

out compression and decompression "on the fly" without additional delay in conveying the image.

In this paper we will describe a method for compressing and decompressing still and moving images. For

moving image sequences of grey-level images, we obtain better than 110 : 1 compression levels with 20 to 30
Signal to Noise Ratio (SNR). We use a learning algorithm for the "random neural network" model (Gelenbe

1989, 1990, 1993 [12, 13, 16] 1) to "teach" a set of networks to compress at different compression levels. A
schematic representation of the complete method we propose is shown in Figure I. The method uses a

simple motion detection scheme, together with the set of learning neural networks for compression and

decompression.

In the sequel we first describe the problem, then review the literature, after which we describe our method

together with measurements describing the resulting compression levels, the SNR of reconstructed images.
We also provide an indication of the data transmission rates for the schemes we develop. This last metric
is particularly relevant when images are transferred over networks, since the nature of the traffic determines

the performance levels which can be expected and the appropriate traffic controls which may have to be

imposed.

1 This model has also been successfully applied to other applications including optimization [15] and image texture analysis

mad reconstruction [3, 4].
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Figure 1: Block diagram of the complete compression scheme.

1.1 The Image Compression Problem

A digital image I is described by a function f : Z x Z ---* {0, 1,...,2 _- 1} where Z is the set of natural
numbers, and k is the maximum number of bits to be used to represent the gray level of each pixel. In other
words, f is a mapping from discrete spatial coordinates (x, y) to gray level values. Thus, M x N x k bits

are required to store an M x N digital image. The aim of digital image compression is to develop a scheme
to encode the original image I into the fewest number of bits such that the image I _ reconstructed from this

reduced representation through the decoding process is as similar to the original imageas possible: i.e. the

problem is to design a COMPRESS and a DECOMPRESS block so that I -._ I' and ]Ie[ << 1I[ where 1.[ denotes
the size in bits (Figure 2).

if'_ COMPRESS
ORIGINAL

IMAGE

I'rIc I'

DECOMPRESS *-

COMPRES SED RECONSTRUCTED

IMAGE IMAGE

Figure 2: Image Compression Block Diagram

The similarity measure can vary for each application. Some applications may require the reconstructed image
to be exactly the same as the original image, in which case the process is called lossless compression. In lossy

compression, the peak signal-to-noise ratio or SNR is used as the measure of similarity or of dissimilarity,
although it does not necessarily reflect visual quality. Assuming that the original and reconstructed images
are represented by functions f(z, y and g(=, y) of the pixel plane position (x, y), respectively, the SNR is
defined by:

SNR = 10log10 (2k - 1)_
e_, (1)

where the root-means-square error is

M-I N-1

2 =_'___ 1
erms MN _ _ [g(z'Y)- f(z'Y) ]2 (2)

• =0 y=O

When moving images are concerned, the compression ratio may vary dynamically with the specific image
or image portion being transmitted, since some advantage will be taken of the existence or non-existence

of significant motion in successive image frames. However the SNR metric will still be relevant to the
evaluation of the resulting quality.
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1.2 State-of-the-Art in Still and Moving Image compression

Image compression research generally addresses the basic trade-off between the reconstruction quality of
the compressed image, the compression ratio, and the complexity and speed of the compression algorithm.
The two currently accepted standards for still and moving image compression are JPEG ([34]) and MPEG

([25]). These schemes provide high compression ratios with good picture reconstruction qualities. How-
ever, the amount of computation required for both is generally too high for real-time applications. MPEG

uses the following techniques: 1) RGB color space coding to YCrCb coding, this gives and automatic 2:1
compression ratio, 2) JPEG encoding based on discrete cosine transform and quantization followed by some
lossless compression, which yields compression ratios as high as 30:1 with good image quality, and 3) Motion

Compensation, in which a frame can be encoded in terms of the previous and next frames. However, these
techniques severely limit the speed at which a sequence of images can be compressed.

Two classical techniques for still image compression are transform and sub-band encoding. In transform

coding techniques the image is subdivided into small block each of which undergoes some reversible linear
transformation (Fourier, Hadamard, Karhunen-Loeve, etc.) followed by quantization and coding based on
reducing redundant information in the transformed domain. In subband coding ([35]), an image is filtered to
create a set of images, each of which contains a limited range of spatial frequencies. These so-called subbands

are then downsampled, quantized and coded. These techniques require much computation. Another common
image compression method is vector quantization ([18]) which can achieve high compression ratios. A vector
quantizer is a system for mapping a stream of analog or very high rate or volume discrete data into a
sequence of low volume and rate data suitable for storage in mass memory, and communication over a digital
channel. This technique mainly suffers from edge degradation and high computational complexity. Although
some more sophisticated vector quantization schemes have been proposed to reduce edge effects ([30]), the

computation overhead still exists. Recently, novel approaches have been introduced based on pyramidal
structures [1], wavelet transforms [36], and fractal transforms [20]. These and some other new techniques
[24] inspired by the representation of visual information in the brain, can achieve high compression ratios

with good visual quality but are nevertheless computationally intensive.

The speed of compression/decompression is a major issue in applications such as videoconferencing, HDTV
applications, videophones, which are all likely to be a part of daily life in the near future. Artificial neural

networks [31] are being widely used as alternative computational tools in many applications. This popularity
is mainly due to the inherently parallel structure of these networks and to their learning capabilities which
can be effectively used for image compression.

Several researchers have used the Learning Vector Quantization (LVQ) network [23] for developing codebooks
whose distribution of codewords approximates the probabilistic distribution of data which is to be presented.

A Hopfield network for vector quantization which achieves compression of less than 4:1 is reported in [27]. A
Kohonen net method for codebook compression is demonstrated in [29]; it seems to perform slightly better
than another standard method of generating codebooks. Cottrell et al. ([8]) train a two-layer perceptron
with a small of number of hidden units to encode and decode images, but do not report encouraging results

about the performance of the network on previously unseen images. Using neural encoder/decoders has

been suggested by many researchers such as [6]. In [i0], the authors present a neural network method for
finding coefficients of a 2-D Gabor transform. This 2-way function can then be quantized and encoded to
give good images at compression of under 1 bit/pixel, and as low as 0.38 bits/pixel with good image quality

in a particular case.

A feed-forward neural network model to achieve 16 : 1 compression of untrained images with SNR = 26.9dB

is presented in [26] by using four different networks to encode different "types" of images. A backpropagation
network to compress data at the hidden layer and an implementation on a 512 processor NCUBE are

discussed in [32]. In [19], the authors perform a comparison of backpropagation networks with recirculation
networks and the DCT (discrete cosine transform). The best results reported here are obtained with the
DCT, then with recirculation networks and finally with backpropagation networks. An interesting feature
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of this paper is that they show the basis images for the neural networks, which allows one to compare the
underlying matrix transformations of the neural networks to that of the DCT. In [11], the authors present

a VLSI implementation of a neuro vector quantization/codebook algorithm. In [28], the authors use a back-
propagation based nested training algorithm to do compression. For images on which the network has already
been trained (which is not specifically of practical use) the compression ratios and resulting qualities are
as follows: 8:1 (SNR = 22.89dB), 64:1 (SNR=15.15dB) to 256:1 (SNR=10.44dB). For previously "unseen"
images, results are given with the following ratios and qualities: 8:1 (SNR=IS.13dB) to 64:1 (SNR=12.93dB).

Our own results for "unseen" images provide substantially better quality, especially at the lower compression
ratios (8:1 and 16:1). In [22], the authors suggest the use of a non-linear mapping function whose parameters
are learned in order to achieve better image compression in a standard backpropagation network.

Motion detection and compensation are key issues when one deals with moving images. Motion compensation
provides for a great deal of the compression in the MPEG standard. By using motion compensation, MPEG
can code the blocks in a frame in terms of motion vectors for the blocks in the previous and/or next

frames. To perform motion must be estimated using block matching over the area local to the block under
consideration. Exhaustive searches which consider all possible motion vectors yield good results. However

for large ranges, the cost of such a search becomes prohibitive and heuristic searches must be used. This
also raises the problem that full motion compensation cannot be performed in real time since it requires the
future frame to be known in advance. Partial motion compensation, in which blocks may be encoded only

in terms of blocks in the previous frame, may be used. One should also note that the MPEG standard does
not specify the method of motion compensation to be used and a neural solution to motion compensation
problem in two dimensions has been examined. In [9], a neural network for motion detection is presented;
however it only works for a one dimensional case and the authors state that problems arise when the approach
is extended to two dimensional detection of edge motion. It appears this approach would involve a great

deal of research before it could be usefully applied in moving picture compression. In [7], a neural network
method for motion estimation is presented. Drawbacks include the assumption that displacement is uniform
in the area of interest. This would be a problem in trying to estimate the motion of a human being in which
motion vectors differ over subsets of the picture.

2 Still Image Compression with the Random Neural Network

One of the common neural approaches in image compression is to train a network to encode and decode the

input data [8], so that the resulting difference between input and output images is minimized. The network
consists of an input layer and an output layer of equal sizes, with an intermediate layer of smaller size in
between. The ratio of the size of the input layer to the size of the intermediate layer is - of course - the

compression ratio. More generally, there can also be several intermediate layers. The network is usually
trained on one or more images so that it develops an internal representation corresponding not to the image

itself, but rather to the relevant features of a class of images.

In our approach, both the input, inteimediate and output image is subdivided into equal-sized blocks and

compression is carried block by block (see Figure 3). This has the desirable effect of reducing the network
learning time. It also achieves good generalization, since the blocks comprising a single test image are used
as the training set. The amount of information representing the compression and decompression algorithm
(i.e. the "weights") is also substantially reduced in this manner. We use a feedforward encoder/decoder
random neural network with one intermediate layer as shown in Figure 8. The weights between the input
layer and the intermediate layer correspond to the encoding or compression process, while the weights from

the intermediate to the output layer correspond to the decoding or decompression process.

Our current results use 8 x 8 boxes, where each element is a byte. We encode the 8-bit gray level values as
real numbers between 0 and i, i.e. we map the [0,255] interval into the [0, 1] interval since the grey level of
each image pixel is transformed into a real-valued excitation level of a neuron (and vice-versa). The network
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ORIGINAL

I-MAGE .....................................................................

COMPRESSED ""'"-..

RF_ONSTRUCTED

IMAGE

Figure 3: Compression of an arbitrarily large image using a neural encoder/decoder

is trained so as to minimize the squared error between the output and input values, thus maximizing the

SNR, with the proviso that the image SNR is measured for quantized values in [0,255] while the neural
network learning uses the corresponding real-valued network parameters. In all the results we report, both
in this section and when we deal with moving images, our networks are trained using the algorithm described
in [16] using a single image: the well-known 512 x 512 8-bit Lena. Indeed, we have found that Lena provides
some of the best results for training the network. The network is then tested for a variety of images, and we

have observed a reconstruction quality ranging from SNR = 23dB to more than 30dB for 16 : 1 compression
(i.e. 0.5 bits/pixel). As an example, Figure 4 shows our results with 16 : 1 compression for the 512 x 512
8-bit Peppers image [17].

l_f_'_x__._'.:,..... ..... :

PEPPERS original SNR = 27.82

Figure 4: Test results for 16 : 1 compression (0.5 bit/pixei) with random neural network
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2.1 Motion Detection

In many applications such as videoconferencing, sequences of image frames representing a moving scene are
transmitted. Often, a substantial part of an image, such as the background, basically does not move -

except for noise which may originate at various levels, including the imaging devices. On the other hand,
the objects in the image move relative to the background, but this displacement be quite small between any
two successive frames. We use these facts in order to perform motion detection. Specifically we examine the
8 x 8 boxes from successive frames Fi-1, Fi. Motion is sensed if the average grayscale value of a box in Fi
differs from that of the corresponding box in frame Fi-1 by more than a certain amount d. We have observed

experimentally that the difference in the average grayscale value of a block that is perceptable to the human
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eye is around around d = 1. Note that the box structure used throughout our compression scheme makes
this approach possible as long as the box size is small enough. Indeed, a large box size would either make it

highly improbable that motion has not occurred within any given box, or would render the detection process
insensitive if accompanied by a large value of d.

We use the first 101 frames of gray-level image sequences, Miss America and Salesman, to test our motion

detector. Each frame is of size 360 x 288 yielding 1620 8 x 8 boxes. To test the motion detector, we load
the first two frames into two arrays. Array 1 contains the frame which is on the screen at the receiving
end of the transmission, while Array 2 is the new frame. Each 8 x 8 box in the frames is tested for motion

detection. If a box is classified as unchanged, the box in Array 1 is replaced by the box in Array. Once
all of the boxes are tested, the next frame is loaded into Array 2, and the process is repeated. Clearly, the
parameter d will influence both the compression ratios and the resulting image quality. In order to illustrate
its effect on compression we have run a series of tests summarized on Table 1. In the tabulated information

note that the "Total Compression Ratio" is derived from the size of the whole video sequence after motion
detection, whereas the "Steady State Compression Ratio" is the average compression ratio due to motion
detection over all the frames after the complete first frame has been transmitted. Both values do include the

overhead due to the additional bits sent for each box of each frame: two bytes to indicate z and y indices
of the block in that frame. For storage applications, a simpler and possibly more efficient scheme with one

bit per block can be used: a bit value of "1" means that motion is detected in the box and that it be sent,
while "0" means that the box will not be sent (and therefore that the previous frame's corresponding box
should be used). However, considering network applications, we will prefer the former header so that the
image transmission will not be sensitive to packet losses.

d

0.5

1.0
1.5

2.0
2.5

3.0

3.5
4.0

4.5

5.0

Miss AMERICA

Compression Ratio Frame

Total Steady State
2.25 2.28

4.44 4.59

6.06 6.38
7.25 7.74

8.42 9.10
9.53 10.41

10.60 11.73

11.71 13.11
12.82 14.54

13.96 16.04

SNR

Mill Max
38.78 40.83

36.81 39.51
35.72 38.07

34.57 37.48
33.91 36.92

33.63 36.68

33.02 36.43

32.69 36.23
32.37 35.80

32.08 35.55

Table 1: Compression ratios obtained only by

SALESMAN

Compression Ratio
Total Steady State
3.01 3.07
6.55 6.94

9.23 10.06

11.26 12.55
13.08 14.88

14.70 17.04

16.32 19.29
18.01 21.71
19.75 24.30

21.38 26.86

Frame SNR
Min Max

37.38 44.15
35.04 43.42

33.66 42.59

32.77 41.94
31.99 41.71

31.41 41.81
30.84 41.28

30.60 41.05

3O.05 40.50
29.77 40.12

motion detection: as a function of difference threshold d

Other results are presented in the form of the actual images before and after motion detection. Figure 5

shows the original and the reconstructed 101st -and last- frame of the sequence with d = i. In Figure 6(a),
the SNR is plotted as a function of frame number for d = 1. Similarly Figure 6(b) shows the number of

bits transmitted as a function of frame number. LFrom these results and other experiments we have run,
it appears that a compression ratio of 6 or 7 can be obtained easily with a value of d close to or slightly
above 1, with satisfactory image quality, when only motion detection is used for compression. In the next

section this scheme will be combined with the actual neural compression of frames in order to achieve high
compression ratios and satisfactory image quality.
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Original 101st frame Reconstructed (SNR = 38.21)

Figure 5: Original and reconstructed last frames (101st frames) in the SALESMAN sequence using the motion

detection scheme with d = 1
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Figure 6: Experimental results for motion detection with d = 1:
Number of bits transmitted as a function of frame number

3 Compression for Moving Images

_m

D

(b)

a) PSNR as a function of frame number, b)

In this section we will describe and evaluate ihe complete compression scheme for video sequences of natural

images, using a combination of the motion detection scheme described earlier together with our adaptive still
block-by-block (Figure 3) random neural network compression/decompression. Specifically, our compression

scheme uses thre___e networks:

The first network scans successive boxes (fixed size portions of the image) in sequence, and identifies

those boxes where motion has taken place, as described above. If a box is considered to be identical

to the same box in the previous frame, it is not compressed or transmitted.

• The second network carries out compression of the box which is identified by the first network. In fact

the second network is a set of distinct neural compression networks C_, ... , C/. which are designed to

achieve different compression levels. Each of these networks compresses the box in parallel. The choice

of the compression level to be selected is carried out by the third network.

• The third network simulates the decompression, and provides a measure of the "quality" of the

compression-decompression. In fact it is composed of L distinct decompression networks D1, ... , Dr,

where Di matches Ci.
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Then the pair Ci,Di which yields the highest compression ratio at a quality level of Q or better, chosen to be

acceptable for the particular application, is selected and the compressed box is transmitted. For grey-level
images Q is formulated as a SNR value. Figure 7 shows the block diagram of the adaptive still image
compression network. Note that with the exception of the initial learning phase, all the operations which
have been outlined above can be carried out "on-the-fly", i.e. in real-time as each box goes through the

transmitter, and as each compressed box goes through the receiver. (See Figure 1 for a block diagram of the
total proposed scheme).

Another refinement would be to use the network Di (which is stored both at the transmitting end and at
the receiving end) to further train the network Ci in on-line mode. In this case, Di's weights will not be
changed, and only Ci's weights are updated.

SELECT

I
c

Figure 7: Block diagram of the adaptive still image compression network

At the _receiving or decompression _ end, if the transmitter has sent a 0 bit to indicate that the current box is

identical to the same box in the previous frame, then the previous frame's box is placed in the corresponding
position of the output image. Otherwise the compressed box is received. Implicitly (through the box's size)
or explicitly (via some variable i which would accompany the box) the compression level used is known to the

receiver. We then use the network Di to decompress the box, which is subsequently placed in appropriate
sequence into the output image. The relationship between any two compression/decompression networks
Ci, Di is shown in (Figure 8).

C
C
C

C
.... J

i Di

!

I

i

__......... J

k'<<N

Figure 8: A Neural Network Compression/Decompression Pair
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3.1 Experimental Results for Moving Image Compression

We have experimented the combined scheme with three still image compression machines (L = 3 with 8 : 1,

16 : 1 and 32 : 1 compression/decompression pairs), and have tested it on the 101-frame Miss America and

Salesman grey-level image sequences. Table 2 summarizes the results we have obtained for Q = 30.

SALESMANMiss AMERICA

d Compression Ratio Frame SNR Compression Ratio Frame SNR

TotM Steady State Min Max TotM Steady State Min Max

0.5 21.69 27.35 31.93 33.70 21.46 31.13 26.86 31.13

1.0 32.82 48.12 32.02 34.02 36.82 57.38 28.26 35.83

1.5 38.91 62.68 32.73 34.24 45.38 81.58 28.72 37.94

2.0 42.88 73.79 32.50 34.44 50.90 101.59 28.93 38.75

2.5 46.30 84.65 32.36 34.54 55.02 119.64 28.90 38.96

3.0 48.81 95.35 32.10 34.60 58.26 136.30 28.77 39.07

3.5 51.95 105.89 32.00 34.69 61.22 153.93 28.73 39.05

4.0 54.36 116.55 31.80 34.76 63.96 I72.67 28.73 39.14

4.5 56.70 128.03 31.71 34.88 66.52 192.91 28.57 39.05

5.0 58.92 140.01 31.50 34.91 68.74 213.08 28.54 39.00

Table 2: Compression ratios obtained by the combination of motion detection and still image compression

with Q - 30: as a function of difference threshold d

In Figure 9 we show the original and the reconstructed 101st frame of Miss America using the complete

scheme described above with d = 1.5 and Q = 30. Figure 10 indicates the variation of compression ratio

over time. Figure 11 shows the running average compression ratios and the running average bits per pixel

for a runlength of 1000, based on Miss America sequence with d = 2 and Q = 30. In Figure 12.a, PSNR is

plotted as a function of frame number for d = 2, Q = 30. Figure 12.b shows the number of bits transmitted

as a function of frame number.
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Original 101st frame Reconstructed (SNR = 32.83)

Figure 9: Original and reconstructed last frames (101st frames) in the MISS AMERICA sequence using the

motion detection scheme with d = 1.5 combined with still image compression with Q = 30

4 Discussion and Conclusions

Many further improvements of the basic method we propose can be thought of and some are certainly

worth further work. In particular the following observations can be used to design networks with enhanced
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Figure 10: Total average compression ratio as a function of block number for the combined scheme with
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Figure ll: Experimental results with Mzss AMERICA sequence using the combined scheme with d = 2 and

Q = 30: a) Running average compression ratio as a function of block number, b) Running average bits
per pixel as a function of block number
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compression capabilities:

• The random neural network learning algorithm (described in the Appendix) applies to arbitrary re-
current networks• Hence, instead of restricting ourselves to fully feedforward networks, we can use
feedback connections between the compressed and input layer, and the output layer and the com-

pressed layer. Further feedback is possible and useful locally within the output layer. Such feedback
can help the network find better compression/decompression parameters.

• The quality level (e.g. SNR) predicted at the transmitting end is exactly what the result is for that
box, after it is decompressed at the receiver, since the networks D1, ... , DL are identical both at the
transmitter and receiver. Thus we propose to update the weights of the neural networks Cz, ... , Cz

constantly using gradient descent to improve performance with each individual box. This will be
detrimented to the "real-time" nature of the whole approach we propose, but would be worth examining

ih order to obtain much higher SNR figures.

• It is also possible to store all of the compression networks CI, ... , CL at the receiver - as well as at
the transmitter. Then, on-going improvement via learning as compression/decompression takes place
can be carried out periodically for both compression and decompression networks, at the expense of

transmitting some uncompressed frames or boxes from time to time.

• Initial learning of weights can be carried out at the transmitter, or receiver, or both at the transmitter
and receiver, or off-line. The resulting weights would then be loaded into the transmitter and the
receiver. Note that if the sample images used for learning are known both to the transmitter and to
the receiver, then the quasi-identical set of weights (to the exception of possible different numerical

round-errors) can be obtained both at the transmitter and at the receiver. Thus, the images to be
used as a basis for learning can be transmitted from time to time (i.e. infrequently) from one to the
other in order to improve the system's compression capabilities.

• All the work described in this paper needs to be extended to colour images. Currently, learning of

the weights of each Ci, Di pair is obtained using gradient descent and the SNR ratio is used as a
performance criterion is essentiMly equivalent to a quadratic cost function. We would use other cost

metrics (such as LAB-type measures) to carry out learning for colour images.

In addition to the general scheme described above, we will examine some other enhancements related to the
non-linearity of the input-output amplitude mapping of the compression/decompression scheme. We expect
to obtain further quality improvement with appropriate compensation of non-linearity. This compensation
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can also be part of the learning scheme. Moreover, the adaptive selection of the level of compression to

be used at the transmitter side can be improved by making use of the state of the transmission medium -

specificMly of the network being used. This would be particularly relevant if we are dealing with an ATM

(Asynchronous Transfer Mode) network. The adaptive decision can be based on feedback about network

state - such as current load on the network - as well as SNR and/or visual quality metrics. For example,

in case of little load on the network, we can favor small compression ratios, thus increasing visual quality.

Similarly, in case of a heavily loaded network, we can sacrifice visual quality and transmit with maximal

compression. This adaptive decision can also be learned.

With some of the improvements described above, we expect to achieve compression ratios better than 250 : 1

for grey-level moving image sequences, and still higher levels for colour, with quality levels of the order of

SNR = 30 for grey level images, and acceptable LAB-type measures and SNR levels for colour images.
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5 Appendix: The Random Neural Network Model and its

Learning Algorithm

N

I

In this appendix we provide a summary of the Random Neural Network Model and of its Learning Algorithm,
in order to provide a theoretical background for the techniques which are used in this paper.

5.1 The Random Neural Network Model

In the random neural network model (Gelenbe (1989,90) [12, 13]) signals in the form of spikes of unit

amplitude circulate among the neurons. Positive signals represent excitation and negative signals represent
inhibition. Each neuron's state is a non-negative integer called its potential, which increases when an

excitation signal arrives to it, and decreases when an inhibition signal arrives. Thus, an excitatory spike is
interpreted as a "+1" signal at a receiving neuron, while an inhibitory spike is interpreted as a "-1" signal.

Neural potential also decreases when the neuron fires. Thus a neuron i emitting a spike, whether it be an
excitation or an inhibition, will lose potential of one unit, going from some state whose value is ki to the

state of value ki - 1.

The state of the n-neuron network at time t, is represented by the vector of non-negative integers k(t) =

(kl(t),...,kn(t)), where ki(t) is the potential or integer state of neuron i. We will denote by k and k_
arbitrary values of the state vector and of the i-th neuron's state.

Neuron i will "fire" (i.e. become excited and send out spikes) if its potential is positive. The spikes will then
be sent out at a rate r(i), with independent, identically and exponentially distributed inter-spike intervals.

Spikes will go out to some neuron j with probability p+(i,j) as excitatory signals, or with probability

p- (i, j) as inhibitory signals. A neuron may also send signals out of the network with probability d(i), and

d(i) + _-I _+(i,j) + p-(i,j)] = 1. Let w + = r(i) p+(i,j), and w_ = r(i) p-(i,j). Here the "w's"
play a role s_milar to that of the synaptic weights in connectionist models, though they specifically represent
rates of excitatory and inhibitory spike emission. They are non-negative. Exogenous (i.e. those coming from
the "outside world") excitatory and inhibitory signals also arrive to neuron i at rates A(i), ),(i), respectively.

This is a "recurrent network" model, i.e. a network which is allowed to have feedback loops, of arbitrary

topology.

Computations related to this model are based on the probability distribution of network state p(k, t) =
Pr[k(t) = k], or with the marginal probability that neuron i is excited qi(t) = Pr[ki(t) > 0]. As a consequence,
the time-dependent behaviour of the model is described by an infinite system of Chapman-Kolmogorov

equations for discrete state-space continuous Markovian systems.

Information in this model is carried by the frequency at which spikes travel. Thus, neuron j, if it is excited,

will send spikes to neuron i at a frequency w_i = w+ + w_j. These spikes will be emitted at exponentially
distributed random intervals. In turn, each neuron behaves as a non-linear frequency demodulator since it
transforms the incoming excitatory and inhibitory spike trains' rates into an "amplitude", which is qi(t)

the probability that neuron i is excited at time t. Intuitively speaking, each neuron of this model is also
a frequency modulator, since neuron i sends out excitatory and inhibitory spikes at rates (or frequencies)

q,(t)r(i)p + (i, j), qi (t)r(i)p- (i, j) to any neuron j.

The stationary probability distribution associated with the model is the quantity used throughout the com-
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putations:

p(k) = tlim p(k, t),

It is given by the following result:

qi =t]i_m q,(t), i= 1,...,n. (3)

Theorem 1. Let qi denote the quantity

qi = A+(i)/[r(i) + A-(i)] (4)

where the 1+(i), A-(i) fort= 1, ..., n satisfy the system of nonlinear simultaneous equations:

)_+(i) = Z qJr(j)P+ (J, i) + h(i), _- (i) = Z qJr(j)p- (j, i) + _(i) (5)
J j

Let k(t) be the vector of neuron potentials at lime t and k = (kl,..., kn) be a particular value of the vector;
let p(k) denote the stationary probability distribution.

p(k) = lira Prob[k(t)= k]
f ---* O0

If a nonnegative solution {A+(i),),-(i)} exists to equations 4 and 5 such that each qi < 1, then

n

p(k) = H[1 - qi]q_'
i=1

(6)

k--J
u

- 7

t_

t--

--i

The quantities which are most useful for computational purposes, i.e. the probabilities that each neuron is
excited, are directly obtained from:

lim Prob[ki(t) > 01 = qi = _+(i)/[r(i) + A-(i)] if qi < 1
"/_¢Z_

5.2 The Learning Algorithm

Let us describe the learning algorithm we use in this study. It is based on the algorithm described in (Gelenbe
93) [161.

The algorithm chooses the set of network parameters W in order to learn a given set of K input-output pairs
(t, Y) where the set of successive inputs is denoted t = {q, ..., tK}, and tk = (Ak, Ak) are pairs of positive
and negative signal flow rates entering each neuron:

Ak = [Ak(1),...,Ak(n)], Xk = [_k(1),...,Ak(n)]

The successive desired outputs are the vectors Y = {Yl, ..., yK), where each vector Yk = (Y_k, ..., yn_), whose
elements yike[0, 1] correspond to the desired values of each neuron. The network approximates the set of
desired output vectors in a manner that minimizes a cost function Ek:

i=l

If we wish to remove some neuron j from network output, and hence from the error function, it suffices to
set aj = 0
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Both of the n by n weight matrices W + = (w+(i,j)) and W_- = (w'_(i,j)} have to be learned after each
input is presented, by computing for each input ek = (Ak,Ak), a new value W + and W_- of the weight
matrices, using gradient descent. Clearly, we seek only solutions for which all these weights are positive.

Let w(u, v) denote any weight term, which would be either w(u, v) =_ w-(u, v), or w(u, v) = w+(u, v). The

weights will be updated as follows:

wk(u, v) = w__,(u, v) - TI_ ai(qik -- yik)[aq,/@w(u, v)lk
i----1

where 0 > 0 is some constant, and

(7)

1. qik is calculated using the input t_ and w(u, v) = wk_l(u, v), in equation 3.

2. [Oqi/aw(u, v)]k is evaluated at the values qi = qik and w(u, v) = wt._l(u, v).

To compute [Oqi/Ow(u, v)]k we turn to the expression 3, from which we derive the following equation:

Oqi/Ow(u, v) = _ Oqj/Ow(u, v)[w+(j,i) - w-(j,i)qi]/D(i)
J

-l[u = ilqi/D(i)

+l[w(u, v) =. w+(u, i)]qulO(i)

-l[w(u, v) =- w-(u, i)]q_,qi/D(i)

Let q = (qa,.-.,qn), and define the n x n matrix

W = {[w+(i,j)-w-(i,j)qj]/D(j)} i,j=l,...,n

We can now write the vector equations:

Oq/Ow +(u, v) = Oq/Ow +(u, v)W + _l+(u, v)qu

Oq/Ow- (u, v) = Oq/Ow- (u, v)W +-l-(u, v)qu

where the elements of the n-vectors 3'+ (u, v) = [7 + (u, v),..., 7+ (u, v)], _,- (u, v) = [77 (u, v),..., 7Z (u, v)]

={
:/

-;_+(u, v)

"y70', v)

are

Notice that

-liD(i) if u = i, v # i
+liD(i) if u # i,v = i
0 for all other values of (u, v)

-(1 + qi)/D(i) if u = i, v = i
-1/D(i) if u = i, v # i
-qi/D(i) if u # i, v = i
0 for all other values of (u, v)

Oq/Ow+(u,v) = 7+(u, v)q_[I- W] -1 (8)
Oq/Ow-(u, v) = _l-(u, v)q_[I- W] -1

where I denotes the n by n identity matrix. Hence the main computational work is to obtain [I - W] -1.

This is of time complexity O(n3), or O(mn _) if an m-step relaxation method is used.

We now have the information to specify the complete learning algorithm for the network. We first initialize.

the matrices W + and W o in some appropriate manner. This initiation wilt be made at random. Choose a
value of _/, and then for each successive value of k, starting with k = 1 proceed as follows:
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1. Set the input values to Lk = (Ak, Ak).

2. Solve the system of nonlinear equations 3 with these values.

3. Solve the system of linear equations (8) with the results of (2).

4. Using equation 7 and the results of (2) and (3), update the matrices W + and W[. Since we seek
the "best" matrices (in terms of gradient descent of the quadratic cost function) that satisfy the

nonnegativity constraint, in any step k of the algorithm, if the iteration yields a negative value of a
term, we have two alternatives:

(a) Set the term to zero, and stop the iteration for this term in this term in this step k; in the next
stop k + 1 we will iterate on this term with the same rule starting from its current null value;

(b) Go back to the previous value of the term and iterate with a smaller value of r/.

This general scheme can be specialized to feedforward networks yielding a computational complexity of
O(n2), rather than O(n3), for each gradient iteration.
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Learning to Train Neural Networks for Real-World Control Problems
/

f

Lee A. Feldkamp
G. V. Puskorius

L. I. Davis, Jr.
F. Yuan

Research Laboratory

Ford Motor Company
MD 3135 SRL

P.O. Box 2053

Dearborn, MI 48121-2053

lfeldkam@ smail.srl.ford.com

ABSTRACT

Over the past three years, our group has concentrated on the application of neural

network methods to the training of controllers for real-world systems. This presentation

will describe our approach, survey what we have found to be important, mention some

contributions to the field, and show some representative results. Topics to be discussed
include:

1) executing model studies as rehearsal for experimental studies
2) the importance of correct derivatives

3) effective training with second-order (DEKF) methods

4) the efficacy of time-lagged recurrent networks

5) liberation from the tyranny of the control cycle using asynchronous truncated

backpropagation through time

6) multi-stream training for robusmess

Results from model studies of automotive idle speed control will serve as examples for
several of these topics. Experimental results may also be shown.
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At McDonnell Douglas Aerospace (MDA), an artificial neural network

based control system has been developed and implemented to control laser

heating for the fiber placement composite manufacturing process. This

neurocontroller learns an approximate inverse model of the process on-line

to provide performance that improves with experience and exceeds that of

conventional feedback control techniques. When untrained, the control

system behaves as a proportional plus integral (PI) controller. However after

learning from experience, the neural network feedforward control module

provides control signals that greatly improve temperature tracking

performance. Faster convergence to new temperature set points and reduced

temperature deviation due to changing feed rate have been demonstrated on
the machine. A Cerebellar Model Articulation Controller (CMAC) network

is used for inverse modeling because of its rapid learning performance. This

control system is implemented in an IBM compatible 386 PC with an A/D
board interface to the machine.
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How Captain Amerika Uses Neural Networks to Fight Crime

N95- 25272

/_/O 7//7

/

Steven K. Rogers, Matthew Kabrisky, Dennis W. Ruck and Mark E. Oxley

Air Force Institute of Technology

Deparmaent of Electrical and Computer Engineering

2950 P Street, Wright-Patterson AFB, OH 45433-7765

15 February 1994

Abstract

Artificial neural networks models can make amazing computations (some of which

are applicable to fighting crime: recognition of faces; speaker identification; fingerprint

recognition). Those models will be explained along with the application of those models

into problems associated with fighting crime. Specific problems addressed are

identification of people using face recognition, speaker identification as well as fingerprint

and handwriting analysis (biornelric authentication).

I Introduction

Before getting started it is common to explain the Captain Amerika connection.

Captain America comic books describe the superhero as: "born in the U.S.A,"

that obviously applies to the authors; "endowed with a superhuman physique," once you

see the authors at the conference you will make the obvious connection with this point;

and finally "fights an ongoing battle for liberty, justice, and the American dream!", who

needs Ross Perot? Oh, by the way, you might also notice in the comic book that Captain

America's secret identity is "Steve Rogers". The "k" in Captain Amerika is just a

copyright infringement worry of that author.

This lecture covers the application of artificial neural network techniques for

fighting crime. For example the image of a suspect might be provided to some law

enforcement agency for processing, possibly to recognize the person in the image. Image

processing usually consist of three stages. The In'st is the location of regions of interest

within the image (segmentation-find the face). The second step is the extraction of a set

of numbers which characterize the regions that are extracted (feature extraction-describe

the face). The last step is the processing of the features for

decision making (classification-decide who it is).

II Crime Fighting Problems

An enormouspart of crime fighting is recognition of faces. We will use this

problem to demonstrate the application of artificial neural networks to real world

problems. During the lecture other problems like fingerprint identification, speaker

identification and handwriting analysis will also be addressed. From automatic mugshot

matching to border crossing monitoring, law enforcement agencies need an autonomous
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face recognition capability. Such a system could also be used to verify users of automatic

teller machine cards, or control of log'in into sensitive computer systems. This capability

has also been used to interface handicapped people to computers. To be honest this hast

application is the one that our group is the most excited about. In this case a young

Chicago lady (13 years old) who has cerebral palsy was interfaced to her personal

computer by recognizing her facial expressions.

111 Segmentation

The f'mding of regions of interest in an image is called segmentation-fred the face in

the image. Any errors in this step are preferred to be false acceptance, (passing pixels that
may not contain parts of the face), but not false negatives (miss regions that might contain

parts of the face). The same concept applies to processing sound. For example, when

trying to identify a speaker's voice, sound is recorded. The parts of the recording that

need to be identified must be segmented from the rest of the recording. To be of any

benefit, this step must significantly reduce the number of pixels or periods of the recording

that the next steps of feature extraction and classification must deal with. The processing

of the raw pixels to find the regions that might contain the face may be the toughest of the

image processing stages. To reduce the amount of computation necessary for the
subsequent processing the system should only look in those regions of space, time,

frequency, intensity or texture where the face is likely to be located. A one-pass

segmentation algorithm filters the raw data to eliminate obvious nonface regions (a

function of neighborhood calculations).

Before feature extraction, image preprocessing is usually necessary. The most

common preprocessing is some form of energy normalization. The preprocessing is

necessary because images have characteristically low contrast and lots of irrelevant

structure. To be effective for real world images, the energy normalization is usually based

on local neighborhood information. Most segmentation techniques are based on

morphological operations, texture analysis and local intensity comparisons or spatial

fxe,quency information processing that allow discrimination of regions of interest from the

rest of the pixels.

Single neurons can be probed by electrodes and stimulus response measurements

made. The results of such measurements show that the system c_s about local
orientation information and motion direction. Similar more recent measurements have

expanded this idea to localized texture information as being the critical first step. To get

information from multiple locations,......._oactive dyes have been used and clearly show the
mapping of the real world onto the visual cortex. One problem with these experiments is
that the animal has to volunteer to have its metabolism reduced to zero for the

measurements. Only volunteer animals are used of course. Using VLSI technology,

multiplexed array cortical electrodes have recently been made and implanted directly onto

cortex.
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IV Feature Extraction

The processing of the data to extract a set of measurements (describe the face) that

represent the gestalt of the information required to decide who is in the image is called

feature extraction. There can be no information gained by this step; its purpose is to

increase the ratio of pertinent information to irrelevant data. If a perfect classification

stage could be accomplished on the raw data, it would achieve the lowest error possible.

But, in the problems of interest here, image processing for face recognition, the processing

of the raw data (the original images) is not always feasible. The dimensionality alone of

such a task make it not an option for some applications. For each region of interest

segmented, a set of features must be found to represent the region for classification.

There are several popular methods for obtaining the features to be used. The first

is to ask experts in the field of interest. For example in the problem of target recognition

some common features include: length-to-width ratio; hot spot intensity; or complexity.

Similarly, relevant expert extracted features are used in face recognition, such as the

distance between anthropometrically significant features. The distance between the eyes
or from the bridge of the nose to the chin. No one believes that computer aides for

recognition are useful if human extracted features have to be keyed in. Finding the

important parts of the face by using artificial neural networks is a key first step.

The second alternative is to have the segmented regions processed directly by the

neural feature extractor. One common neural feature extraction technique uses a layer of

artificial neurons with receptive fields in the input raw data. This is similar to the

processing discovered in visual striate cortex, V1. The Nobel Prize winning results of

Hubel and Wiesel clearly demonstrated that orientation selectivity and motion direction

selectivity within the receptive field of a striate neuron exists. The weights for these

artificial neurons are either found using a gradient search based learning algorithm,

hardwired based on some a priori knowledge (such as a Hubel and Wiesel or the later

work of Jones and Palmer) of types of feature extraction that might be useful.

Quite often after classification, questions are asked about which features caused a

particular decision to be made. That is, the question of why a particular region of a

photograph was called President Clinton and another called Ross Perot. It's not the shoes.

It's got to be the ears? A related question is: of the many features that may have been

suggested as useful for a given problem which ones are the most important ones for the

task of interest? The answer to this question is often used to reduce the set of feature

measurements (vector) to a smaller dimension. This is critical in applications where there

are only a limited amount of training data available. To reduce the feature vector, the
most common statistical and trial-and-error techniques have been augmented with neural

feature saliency techniques. Conventional statistical correlation ideas are the most

common technique to find how features are related. The discovery of nonobvious

relationships between features may be one of the great contributions of neural networks.

One of the early applications of neural networks was in loan analysis. The data on the

application for the loan were fed into a neural network and the network that had been
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trained on historical data on loan defaults would predict whether you would default. For

litigation reasons the users of such networks had to be able to determine the application

info_tion that the netwo_ considered to be _e'in_cat0r of you eventually defaulting.

There also currently exists artificial neural network systems that monitor credit card

transactions to detect fi-aud. They are trained on _storicaI transaction data and analyze
current transactions to detect fraudulent transactions.

As a side note, using the biological insight a good set of candidate features can

often be found, in the application of speaker identification, measurements of the

processing of the pinna and frequency extraction as a function of distance along the
cochlea have resulted in models that have been demonstrated useful in sound localization

and speaker identification.

V Classification

Once the features that are to be used to decide whether a particular region of

interest requires further attention are extracted, they are submitted to the classification
stage. _s is the area where neural techn]-q-ueS have proven to be most useful. The most

common neural techniques require an enormous amount of labeled data. Labeled data has

to be hand labeled by experts. It is the experience of these experts that the classification

step must learn to encode in the interconnection weights. In the application of face

recognition, some expert must feed the network with images and tell the network the

identity of the face. Similarly, someone must identify the voice from a training recording

before the system can identify the person from a later recording.

It has been proven many times in the literaturethat the common neural techniques

perform as approximators of the Bayes optimal decision elements (minimum probability of

error). This allows the user to know that if correctly engineered there are no first order

siatistical techniques which will outperform the neural algorithms with respect to

accuracy. Even wi_ _ knowledge the Cb_m'son Of the neural: classification algorithms

with statistical techniques such as regression or quadratic discfiminant function analysis is

useful to ensure that the neural technique is correctly engineered.

VI Future Work

The most important future area of research is in field test and demonstration.

Large scale tests will determine whether anything useful will come out of the preliminary

exciting results. It will only be by statistically significant improvement in real world

applications such as crime fighting that this technology will be proven.

Fundamental work on generalization predictions is also necessary. The question is
how much _datawill be required in a given application to allow the system to be fielded

with some confidence on how well it will perform. How much shrinkage should be

expected from the accuracy rate seen in training to the rate that is expected in the real
world.

m

[]
n

m

R

II

i

|

HI

D

|
U

m

J

m

II

B

iil

H

u

M

ii

m
!

II

m

i

234

ii



= .

K

H

IF ;_1

H

t___

N

|

i

The combination of neural with fuzzy and expert system techniques will also play a
key role in driving these solutions to useful applications. Joint conferences, such as the

IEEE World Congress on Computational Intelligence, may allow a quick improvement in
this area.

One of the most interesting areas of research is in consciousness. Real brains, of

course, think about being real brains. The idea of self-awareness as a computation going

on within your brain is controversial but true. How does a piece of meat think about being

a piece of meat? Could meat ever understand how it does it? Why does human meat

seem to be different from that of other animals even though all mammalian brains are

constructed to the same basic plan using the same basic parts? There are fundamental

limits to the computational capability of the human brain. One way to see the limitations is

by the concept of Miller's magical number seven plus or minus two. The human brain is

limited to keeping track of about seven things. If keeping track of more than seven things

is required to build a stable world society then we have a problem. In the context of this

lecture if more "chunks" (more than seven) are required to understand self-awareness then

we will never understand how we do it. A puppy dog has fewer chunks than the seven.

How many does a chimp have? How can we measure the number of "chunks" for

nonverbal animals or ff they also can compute their own existence? Series of delay-non-

matching-to-sample tests may work here.

The illusion of self awareness is aided and abetted by a series of tricks and lies

perpetrated by the human sensory systems; the world is not quite the way it looks, not at
all the way it sounds, and the sense of the flow of time is a total confabulation which runs

about 200 milliseconds behind real time. The purpose of the brain is to construct as

accurate a model of the world as it can given the inevitable limitations of being made out

of meat. The results, though, are really amazing; we live inside our own private bags of

life which are equipped with a seemingly high fidelity stereo sound system, a 3-

dimensional movie display and complete cognizance of touch and smell. We have an

enormous content-addressable memory and can keep track of about seven things

simultaneously. We can manipulate arbitrary symbols and create the illusion that we are

aware of our own existence (and thus compute that it will someday end). Some of the

neural hardware forming the sensory systems was described in this lecture but a complete

description of how it all works does not exist nor is there any reason to imagine that a
human brain could understand it if it did.

VII Conclusions

It has been shown in several areas that artificial neural networks can make a

significant impact in fighting crime. The biometric authentication systems are being

fielded. The application of neural technology to other cfitr_-related problems is

necessary. This will require a joint effort between experts in the law enforcement area

with signal processing people. Participation at the professional meetings of each group by
the other is critical.
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